# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4712 | 0 | 1.0000 | The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. BACKGROUND: Sub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown. RESULTS: We generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal's gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes. CONCLUSION: The reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters. | 2018 | 30482240 |
| 5101 | 1 | 0.9995 | Identification of Key Features Pivotal to the Characteristics and Functions of Gut Bacteria Taxa through Machine Learning Methods. BACKGROUND: Gut bacteria critically influence digestion, facilitate the breakdown of complex food substances, aid in essential nutrient synthesis, and contribute to immune system balance. However, current knowledge regarding intestinal bacteria remains insufficient. OBJECTIVE: This study aims to discover essential differences for different intestinal bacteria. METHODS: This study was conducted by investigating a total of 1478 gut bacterial samples comprising 235 Actinobacteria, 447 Bacteroidetes, and 796 Firmicutes, by utilizing sophisticated machine learning algorithms. By building on the dataset provided by Chen et al., we engaged sophisticated machine learning techniques to further investigate and analyze the gut bacterial samples. Each sample in the dataset was described by 993 unique features associated with gut bacteria, including 342 features annotated by the Antibiotic Resistance Genes Database, Comprehensive Antibiotic Research Database, Kyoto Encyclopedia of Genes and Genomes, and Virulence Factors of Pathogenic Bacteria. We employed incremental feature selection methods within a computational framework to identify the optimal features for classification. RESULTS: Eleven feature ranking algorithms selected several key features as pivotal to the characteristics and functions of gut bacteria. These features appear to facilitate the identification of specific gut bacterial species. Additionally, we established quantitative rules for identifying Actinobacteria, Bacteroidetes, and Firmicutes. CONCLUSION: This research underscores the significant potential of machine learning in studying gut microbes and enhances our understanding of the multifaceted roles of gut bacteria. | 2025 | 40671232 |
| 7707 | 2 | 0.9994 | Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes. | 2024 | 39620486 |
| 7703 | 3 | 0.9994 | The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. BACKGROUND: While antibiotics are commonly used to treat inflammatory bowel disease (IBD), their widespread application can disturb the gut microbiota and foster the emergence and spread of antibiotic resistance. However, the dynamic changes to the human gut microbiota and direction of resistance gene transmission under antibiotic effects have not been clearly elucidated. METHODS: Based on the Human Microbiome Project, a total of 90 fecal samples were collected from 30 IBD patients before, during and after antibiotic treatment. Through the analysis workflow of metagenomics, we described the dynamic process of changes in bacterial communities and resistance genes pre-treatment, during and post-treatment. We explored potential consistent relationships between gut microbiota and resistance genes, and established gene transmission networks among species before and after antibiotic use. RESULTS: Exposure to antibiotics can induce alterations in the composition of the gut microbiota in IBD patients, particularly a reduction in probiotics, which gradually recovers to a new steady state after cessation of antibiotics. Network analyses revealed intra-phylum transfers of resistance genes, predominantly between taxonomically close organisms. Specific resistance genes showed increased prevalence and inter-species mobility after antibiotic cessation. CONCLUSION: This study demonstrates that antibiotics shape the gut resistome through selective enrichment and promotion of horizontal gene transfer. The findings provide insights into ecological processes governing resistance gene dynamics and dissemination upon antibiotic perturbation of the microbiota. Optimizing antibiotic usage may help limit unintended consequences like increased resistance in gut bacteria during IBD management. | 2024 | 38694799 |
| 9657 | 4 | 0.9994 | Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome. Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism's direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical applications. | 2018 | 29359195 |
| 7705 | 5 | 0.9994 | Oxytetracycline reduces the diversity of tetracycline-resistance genes in the Galleria mellonella gut microbiome. BACKGROUND: Clinically-relevant multidrug resistance is sometimes present in bacteria not exposed to human-made antibiotics, in environments without extreme selective pressures, such as the insect gut. The use of antibiotics on naïve microbiomes often leads to decreased microbe diversity and increased antibiotic resistance. RESULTS: Here we investigate the impact of antibiotics on the insect gut microbiome by identifying tetracycline-resistance genes in the gut bacteria of greater wax moth (Galleria mellonella) larvae, feeding on artificial food containing oxytetracycline. We determined that G. mellonella can be raised on artificial food for over five generations and that the insects tolerate low doses of antibiotics in their diets, but doses of oxytetracycline higher than sub-inhibitory lead to early larval mortality. In our experiments, greater wax moth larvae had a sparse microbiome, which is consistent with previous findings. Additionally, we determined that the microbiome of G. mellonella larvae not exposed to antibiotics carries a number of tetracycline-resistance genes and some of that diversity is lost upon exposure to strong selective pressure. CONCLUSIONS: We show that G. mellonella larvae can be raised on artificial food, including antibiotics, for several generations and that the microbiome can be sampled. We show that, in the absence of antibiotics, the insect gut microbiome can maintain a diverse pool of tetracycline-resistance genes. Selective pressure, from exposure to the antibiotic oxytetracycline, leads to microbiome changes and alteration in the tetracycline-resistance gene pool. | 2018 | 30594143 |
| 7720 | 6 | 0.9994 | Traditionally produced tempeh harbors more diverse bacteria with more putative health-promoting properties than industrially produced tempeh. In recent years, there has been a significant shift towards industrialization in food production, resulting in the implementation of higher hygiene standards globally. Our study focused on examining the impact of hygiene standards on tempeh, a popular Rhizopus-based fermented soybean product native to Indonesia, and now famous around the world. We observed that tempeh produced with standardized hygiene measures exhibited a microbiome with comparable bacterial abundances but a markedly different community structure and function than traditionally produced tempeh. In detail, we found a decreased bacterial abundance of lactobacilli and enterobacteria, bacterial diversity, different indicator taxa, and significantly changed community structure in industrial tempeh. A similar picture was found for functional analysis: the quantity of bacterial genes was similar but qualitative changes were found for genes associated with human health. The resistome of tempeh varied based on its microbiome composition. The higher number of antimicrobial resistance genes in tempeh produced without standardized hygiene measures mainly belong to multidrug efflux pumps known to occur in plant-based food. Our findings were confirmed by functional insights into genomes and metagenome-assembled genomes from the dominant bacteria, e.g. Leuconostoc, Limosilactobacillus, Lactobacillus, Enterococcus, Paenibacillus, Azotobacter and Enterobacter. They harboured an impressive spectrum of genes important for human health, e.g. for production of vitamin B(1), B(7), B(12), and K, iron and zinc transport systems and short chain fatty acid production. In conclusion, industrially produced tempeh harbours a less diverse microbiome than the traditional one. Although this ensures production at large scales as well as biosafety, in the long-term it can lead to potential effects for human gut health. | 2024 | 39614549 |
| 7706 | 7 | 0.9993 | Antibiotics in feed induce prophages in swine fecal microbiomes. Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the "kill-the-winner" ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. IMPORTANCE: This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of "growth-promoting" antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called "kill-the-winner" model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies. | 2011 | 22128350 |
| 7704 | 8 | 0.9993 | Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Antimicrobial resistance-associated infections have become a major threat to global health. The gut microbiome serves as a major reservoir of bacteria with antibiotic resistance genes; whereas, the temporal development of gut resistome during early childhood and the factors influencing it remain unclear. Moreover, the potential interactions between gut microbiome and resistome still need to be further explored. In this study, we found that antibiotic treatment led to destabilization of the gut microbiome and resistome structural communities, exhibiting a greater impact on the resistome than on the microbiome. The composition of the gut resistome at various developmental stages was influenced by the abundance and richness of different core microbes. First exposure to antibiotics led to a dramatic increase in the number of opportunistic pathogens carrying multidrug efflux pump encoding genes. Multiple factors could influence the gut microbiome and resistome formation. The data may provide new insights into early-life research.IMPORTANCEIn recent years, the irrational or inappropriate use of antibiotics, an important life-saving medical intervention, has led to the emergence and increase of drug-resistant and even multidrug-resistant bacteria. It remains unclear how antibiotic exposure affects various developmental stages of early childhood and how gut core microbes under antibiotic exposure affect the structural composition of the gut resistome. In this study, we focused on early antibiotic exposure and analyzed these questions in detail using samples from infants at various developmental stages. The significance of our research is to elucidate the impact of early antibiotic exposure on the dynamic patterns of the gut resistome in children and to provide new insights for early-life studies. | 2024 | 38193687 |
| 3857 | 9 | 0.9993 | How Gut Microbiome Perturbation Caused by Antibiotic Pre-Treatments Affected the Conjugative Transfer of Antimicrobial Resistance Genes. The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs. To address this, mice were pre-treated with streptomycin, ampicillin, or sulfamethazine, and then orally inoculated with Salmonella enterica serovar Typhimurium and S. Heidelberg carrying a multi-drug resistance IncA/C plasmid. The streptomycin pre-treatment caused severe microbiome perturbation, promoting the high-density colonization of S. Heidelberg and S. Typhimurium, and enabling an IncA/C transfer from S. Heidelberg to S. Typhimurium and a commensal Escherichia coli. The ampicillin pre-treatment induced moderate microbiome perturbation, supporting only S. Heidelberg colonization and the IncA/C transfer to commensal E. coli. The sulfamethazine pre-treatment led to mild microbiome perturbation, favoring neither Salmonella spp. colonization nor a conjugative plasmid transfer. The degree of gut dysbiosis also influenced the enrichment or depletion of the ARGs associated with mobile plasmids or core commensal bacteria, respectively. These findings underscore the significance of pre-existing gut dysbiosis induced by various antibiotic treatments on ARG dissemination and may inform prudent antibiotic use practices. | 2024 | 39597538 |
| 4715 | 10 | 0.9993 | Genomic and stress resistance characterization of Lactiplantibacillus plantarum GX17, a potential probiotic for animal feed applications. Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of Lactiplantibacillus plantarum (L. plantarum) strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted. Based on the entire genome sequence analysis, 50 stress resistance genes and seven virulence factors were identified. The results of the phenotypic experiments showed that the strain had good resistance to high temperature, low temperature, acid, alkali, salt, artificial gastrointestinal fluid, and strong antioxidant capacity. Additionally, transcriptomic analysis confirmed that under stress conditions, the expression levels of key genes were significantly upregulated. Therefore, the phenotypic characteristics of L. plantarum GX17 align well with its genotypic features, demonstrating promising probiotic properties. This strain holds great potential as a probiotic candidate, and further investigation into its beneficial effects on human health is warranted. IMPORTANCE: In humans, Lactiplantibacillus plantarum may synergize with host microbiota to ameliorate dysbiosis-related pathologies, enhance immunomodulation, and facilitate micronutrient bioavailability. For livestock, its application could improve feed conversion ratios, suppress enteric pathogens through competitive exclusion, and mitigate antibiotic overuse, "a critical strategy in One Health frameworks." Further investigations into strain-specific mechanisms (e.g., postbiotic metabolites, quorum sensing regulation) are warranted to translate these genomic-phenotypic advantages into sustainable health solutions across species. | 2025 | 40919934 |
| 6740 | 11 | 0.9993 | Metatranscriptomics reveals that plant tannins regulate the expression of intestinal antibiotic resistance genes in Qinghai voles (Neodon fuscus). Antibiotic resistance genes (ARGs) are a persistent harmful environmental pollutant, epidemic of ARGs thought to be a result of antibiotic misuse. Tannin acid (TA) is a natural plant compounds with bactericidal properties. Nowadays, TA is considered to be a potential replacement of antibiotics. However, the role of TA on ARGs is also not yet clear. To address this knowledge gap, we fed the model plateau animal Qinghai voles (Neodon fuscus) with different concentrations of TA. We used 16S rDNA sequencing for revealing total bacteria, 16S rRNA sequencing for revealing active bacteria, and metatranscriptomics (active function) sequencing for revealing ARGs and other functions. Our results showed that although TA reduced macrolide ARGs, TA group enriched 6-fold for tetracycline ARGs, 3-fold for multidrug ARGs, and 5-fold for aminoglycoside ARGs compared with control group. Moreover, TA reduced animal growth performance, and regulated gut microbiome more stable by improving microbial diversity. And TA promoted the production of short-chain fatty acids by gut microbes, such as lactate and acetate. This study reveals modulation of ARGs and gut microbiome by TA and also provides scientific value for the proper use of TA in feed and medical treatment. | 2025 | 39952456 |
| 8678 | 12 | 0.9993 | Metagenomics-Guided Discovery of Potential Bacterial Metallothionein Genes from the Soil Microbiome That Confer Cu and/or Cd Resistance. Metallothionein (MT) genes are valuable genetic materials for developing metal bioremediation tools. Currently, a limited number of prokaryotic MTs have been experimentally identified, which necessitates the expansion of bacterial MT diversity. In this study, we conducted a metagenomics-guided analysis for the discovery of potential bacterial MT genes from the soil microbiome. More specifically, we combined resistance gene enrichment through diversity loss, metagenomic mining with a dedicated MT database, evolutionary trace analysis, DNA chemical synthesis, and functional genomic validation to identify novel MTs. Results showed that Cu stress induced a compositional change in the soil microbiome, with an enrichment of metal-resistant bacteria in soils with higher Cu concentrations. Shotgun metagenomic sequencing was performed to obtain the gene pool of environmental DNA (eDNA), which was subjected to a local BLAST search against an MT database for detecting putative MT genes. Evolutional trace analysis led to the identification of 27 potential MTs with conserved cysteine/histidine motifs different from those of known prokaryotic MTs. Following chemical synthesis of these 27 potential MT genes and heterologous expression in Escherichia coli, six of them were found to improve the hosts' growth substantially and enhanced the hosts' sorption of Cu, Cd, and Zn, among which MT5 led to a 13.7-fold increase in Cd accumulation. Furthermore, four of them restored Cu and/or Cd resistance in two metal-sensitive E. coli strains.IMPORTANCE The metagenomics-guided procedure developed here bypasses the difficulties encountered in classic PCR-based approaches and led to the discovery of novel MT genes, which may be useful in developing bioremediation tools. The procedure used here expands our knowledge on the diversity of bacterial MTs in the environment and may also be applicable to identify other functional genes from eDNA. | 2020 | 32111593 |
| 4642 | 13 | 0.9993 | Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. BACKGROUND: The abundance and diversity of antibiotic resistance genes (ARGs) in the human respiratory microbiome remain poorly characterized. In the context of influenza virus infection, interactions between the virus, the host, and resident bacteria with pathogenic potential are known to complicate and worsen disease, resulting in coinfection and increased morbidity and mortality of infected individuals. When pathogenic bacteria acquire antibiotic resistance, they are more difficult to treat and of global health concern. Characterization of ARG expression in the upper respiratory tract could help better understand the role antibiotic resistance plays in the pathogenesis of influenza-associated bacterial secondary infection. RESULTS: Thirty-seven individuals participating in the Household Influenza Transmission Study (HITS) in Managua, Nicaragua, were selected for this study. We performed metatranscriptomics and 16S rRNA gene sequencing analyses on nasal and throat swab samples, and host transcriptome profiling on blood samples. Individuals clustered into two groups based on their microbial gene expression profiles, with several microbial pathways enriched with genes differentially expressed between groups. We also analyzed antibiotic resistance gene expression and determined that approximately 25% of the sequence reads that corresponded to antibiotic resistance genes mapped to Streptococcus pneumoniae and Staphylococcus aureus. Following construction of an integrated network of ARG expression with host gene co-expression, we identified several host key regulators involved in the host response to influenza virus and bacterial infections, and host gene pathways associated with specific antibiotic resistance genes. CONCLUSIONS: This study indicates the host response to influenza infection could indirectly affect antibiotic resistance gene expression in the respiratory tract by impacting the microbial community structure and overall microbial gene expression. Interactions between the host systemic responses to influenza infection and antibiotic resistance gene expression highlight the importance of viral-bacterial co-infection in acute respiratory infections like influenza. Video abstract. | 2020 | 32178738 |
| 7708 | 14 | 0.9993 | Dietary impact on the gut resistome: western diet independently increases the prevalence of antibiotic resistance genes within the gut microbiota. Approximately half of surgical site infections are caused by pathogens resistant to the antibiotics used for prophylaxis. We recently demonstrated that when mice are fed a western diet (WD) that is high in fat and low in fiber, exposed to antibiotics, and undergo an otherwise recoverable surgery, they develop lethal sepsis associated with dissemination of multi-drug-resistant pathogens. Here, we hypothesized that a WD alone can drive the intestinal microbiome to become populated by antibiotic-resistant bacteria independent of exposure to antibiotics. The cecal microbiota response to antibiotics was determined utilizing Biolog Phenotype Microarrays in the presence of 48 different antibiotics. WD-fed mice had a significant increase in antibiotic resistance within their microbiome compared to mice on a standard low-fat, high-fiber diet (SD) including aminoglycosides, tetracyclines, cephalosporins, fluoroquinolones, and sulfamethoxazole. By metagenomic sequencing, there was an increase in the antibiotic resistance genes (ARGs) within the WD cecal microbiota, including CfxA2, ErmG, TetQ, and LnuC. After just 7 days of WD, the ARGs ErmG and CfxA2 were detectable within the stool. WD independent of antibiotic exposure increases the presence of ARGs within the gut microbiota independent of antibiotic exposure.IMPORTANCEAntibiotic resistance is a major challenge in healthcare and results in significant morbidity and mortality. Currently, half of surgical site infections are caused by pathogens resistant to antibiotics used for prophylaxis. In this study, we demonstrate that a western diet alone has the ability to increase the presence of antibiotic resistance genes within the gut microbiome. By understanding dietary influences on the gut resistome, we may improve our understanding of infections with antibiotic-resistant organisms and one day develop personalized antibiotic regimens based on an individual's gut resistome. | 2025 | 40719501 |
| 7403 | 15 | 0.9993 | Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Enrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host. | 2023 | 36840593 |
| 7672 | 16 | 0.9993 | Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Globally, ~340 million children suffer from multiple micronutrient deficiencies, accompanied by high pathogenic burden and death due to multidrug-resistant bacteria. The microbiome is a reservoir of antimicrobial resistance (AMR), but the implications of undernutrition on the resistome is unclear. Here we used a postnatal mouse model that is deficient in multiple micronutrients (that is, zinc, folate, iron, vitamin A and vitamin B12 deficient) and shotgun metagenomic sequencing of faecal samples to characterize gut microbiome structure and functional potential, and the resistome. Enterobacteriaceae were enriched in micronutrient-deficient mice compared with mice fed an isocaloric experimental control diet. The mycobiome and virome were also altered with multiple micronutrient deficiencies including increased fungal pathogens such as Candida dubliniensis and bacteriophages. Despite being antibiotic naïve, micronutrient deficiency was associated with increased enrichment of genes and gene networks encoded by pathogenic bacteria that are directly or indirectly associated with intrinsic antibiotic resistance. Bacterial oxidative stress was associated with intrinsic antibiotic resistance in these mice. This analysis reveals multi-kingdom alterations in the gut microbiome as a result of co-occurring multiple micronutrient deficiencies and the implications for antibiotic resistance. | 2023 | 37973864 |
| 3858 | 17 | 0.9993 | Intestinal toxicity and resistance gene threat assessment of multidrug-resistant Shigella: A novel biotype pollutant. Multidrug-resistant bacteria, especially pathogens, pose a serious threat to disease treatment and recovery, but their potential toxicity to animal development is not entirely clear. As the most important site for nutrient absorption, we studied the intestinal microbiome of Xenopus tropicalis by analyzing the effect of multidrug-resistant Shigella on its intestinal health. Unlike in the control, Shigella intake promoted the secretion of neutral mucus and inhibited intestinal development and weight gain. Following 60 days of exposure, intestinal crypt atrophy, intestinal villus shortening, internal cavity enlargement, and external mucosal muscle disintegration were observed. The circular and longitudinal intestinal muscles became thinner with increasing pathogen exposure. In addition, the presence of Shigella altered the expression of multiple cytokines and classic antioxidant enzyme activities in the gut, which may have caused the intestinal lesions that we observed. 16 S rDNA sequencing analysis of intestinal samples showed that exposure to Shigella destroyed the normal gut microbial abundance and diversity and increased the functional bacterial ratio. Notably, the increased abundance of intestinal antibiotic resistance genes (ARGs) may imply that the resistance genes carried by Shigella easily migrate and transmit within the intestine. Our results expand existing knowledge concerning multidrug-resistant Shigella-induced intestinal toxicity in X. tropicalis and provide new insights for the threat assessment of resistance genes carried by drug-resistant pathogens. | 2023 | 36332708 |
| 7692 | 18 | 0.9993 | 16S rRNA gene sequencing data of the human skin microbiome before and after swimming in the ocean. These data represent the abundance, diversity and predicted function gene profiles of the microbial communities present on human skin before and after swimming in the ocean. The skin microbiome has been shown to provide protection against infection from pathogenic bacteria. It is well-known that exposure to ocean water can cause skin infection, but little is known about how exposure can alter the bacterial communities on the skin. Skin microbiome samples were collected from human participants before and after swimming in the ocean. These data were used to analyze the changes in abundance and diversity of microbial communities on the skin and the changes in the functional profiles of the bacteria, specifically focusing on genes involved in antibiotic resistance and bacterial virulence. | 2021 | 34189199 |
| 7690 | 19 | 0.9993 | Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming. Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized as accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hot spots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline, and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPP(AZI 4), encoded within an alternative open reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPP(AZI 4) can promote resistance against different macrolides but not other ribosome-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide.IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding specialized and potential resistance mechanisms are abundant in natural environments, but understanding of their identity and genomic context remains limited. Our discovery of several previously unknown antibiotic resistance genes from uncultured soil microorganisms indicates that soil is a significant reservoir of resistance determinants, which, once acquired and "repurposed" by pathogenic bacteria, can have serious impacts on therapeutic outcomes. This study provides valuable insights into the diversity and identity of resistance within the soil microbiome. The finding of a novel peptide-mediated resistance mechanism involving an unpredicted gene product also highlights the usefulness of integrating proteomics analysis into metagenomics-driven gene discovery. | 2017 | 28625995 |