# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4707 | 0 | 1.0000 | Comparative transcriptome analyses of magainin I-susceptible and -resistant Escherichia coli strains. Antimicrobial peptides (AMPs) have attracted considerable attention because of their multiple and complex mechanisms of action toward resistant bacteria. However, reports have increasingly highlighted how bacteria can escape AMP administration. Here, the molecular mechanisms involved in Escherichia coli resistance to magainin I were investigated through comparative transcriptomics. Sub-inhibitory concentrations of magainin I were used to generate four experimental groups, including magainin I-susceptible E. coli, in the absence (C) and presence of magainin I (CM); and magainin I-resistant E. coli in the absence (R) and presence of magainin I (RM). The total RNA from each sample was extracted; cDNA libraries were constructed and further submitted for Illumina MiSeq sequencing. After RNA-seq data pre-processing and functional annotation, a total of 103 differentially expressed genes (DEGs) were identified, mainly related to bacterial metabolism. Moreover, down-regulation of cell motility and chaperone-related genes was observed in CM and RM, whereas cell communication, acid tolerance and multidrug efflux pump genes (ABC transporter, major facilitator and resistance-nodulation cell division superfamilies) were up-regulated in these same groups. DEGs from the C and R groups are related to basal levels of expression of homeostasis-related genes compared to CM and RM, suggesting that the presence of magainin I is required to change the transcriptomics panel in both C and R E. coli strains. These findings show the complexity of E. coli resistance to magainin I through the rearrangement of several metabolic pathways involved in bacterial physiology and drug response, also providing information on the development of novel antimicrobial strategies targeting resistance-related transcripts and proteins herein described. | 2018 | 30277857 |
| 4708 | 1 | 0.9998 | Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. The worldwide emergence of antibiotic-resistant bacteria poses a serious threat to human health. To understand the mechanisms of the resistance is extremely important to the control of these bacteria. In the current study, proteomic methodologies were utilized to characterize OM proteome of Escherichia coli with nalidixic acid (NA) resistance. The OM proteins TolC, OmpT, OmpC and OmpW were found to be up-regulated, and FadL was down-regulated in the NA-resistant E. coli strains. The changes at the level of protein expression were validated using Western blotting. Furthermore, the possible roles these altered proteins played in regulation of NA resistance were investigated using genetically modified strains with the deletion of these genes. The results obtained from functional characterization of these genetically modified strains suggest that TolC and OmpC may play more important roles in the control of NA resistance than other OM proteins identified. To gain better understanding of the mechanisms of NA resistance, we also characterized the role of the two-component system EnvZ/OmpR which is responsible for the regulation of OmpC and OmpF expression in response to NA resistance using their genetically modified strains. Our results suggest that OmpF and the EnvZ/OmpR are also important participants of the pathways regulating the NA resistance of E. coli. | 2008 | 18438992 |
| 8965 | 2 | 0.9998 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 6293 | 3 | 0.9997 | Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli. | 2023 | 37224563 |
| 8943 | 4 | 0.9997 | Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. BACKGROUND: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. RESULTS: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. CONCLUSION: Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica. | 2012 | 22632036 |
| 8966 | 5 | 0.9997 | Gene expression profile of Campylobacter jejuni in response to macrolide antibiotics. Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively. | 2024 | 38393387 |
| 8968 | 6 | 0.9997 | Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure. | 2007 | 17426813 |
| 6320 | 7 | 0.9997 | Identification of the Extracytoplasmic Function σ Factor σ(P) Regulon in Bacillus thuringiensis. Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many β-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σ(P). We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σ(P). We compared the protein profiles of strains which either lacked σ(P) or overexpressed σ(P). We identified 8 members of the σ(P) regulon which included four β-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by β-lactams in a σ(P)-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of β-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of β-lactamases and PBPs are involved in resistance to different β-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. β-Lactams remain an important treatment option for many diseases. However, the spread of β-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding β-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σ(P), in B. thuringiensis controls expression of multiple genes involved in resistance to β-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σ(P) results in increased resistance to a wider range of β-lactam classes than any single gene could provide. | 2022 | 35080471 |
| 6318 | 8 | 0.9997 | Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy. | 2004 | 15569938 |
| 6342 | 9 | 0.9997 | Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species. | 2018 | 29439964 |
| 8964 | 10 | 0.9997 | Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance. | 2021 | 34098732 |
| 4705 | 11 | 0.9997 | Upregulation of outer membrane porin gene ompC contributed to enhancement of azithromycin susceptibility in multidrug-resistant Escherichia coli. The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics. | 2024 | 38441474 |
| 6326 | 12 | 0.9997 | Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy. | 2008 | 18373646 |
| 4703 | 13 | 0.9997 | Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. The emergence of antimicrobial resistance among foodborne bacteria associated with food animal production is an important global issue. We hypothesised that antibiotics generate a positive adaptive state in Salmonella that actively contributes to the development of antimicrobial resistance. This is opposed to common views that antimicrobials only act as a passive selective pressure. Microarray analysis was used to evaluate changes in gene expression that occur upon exposure of Salmonella enterica Typhimurium ATCC 14028 to 1.6 microg/mL of nalidixic acid. The results showed a significant (P < 0.02) difference (fold expression differences >2.0) in the expression of 226 genes. Comparatively repressed transcripts included Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Induced genes included efflux pumps representing all five families of multidrug-resistance efflux pumps, outer membrane lipoproteins, and genes involved in regulating lipopolysaccharide chain length. This profile suggests both enhanced antimicrobial export from the cell and membrane permeability adaptations to limit diffusion of nalidixic acid into the cell. Finally, increased expression of the error-prone DNA repair mechanisms were also observed. From these data we show a highly integrated genetic response to nalidixic acid that places Salmonella into a positive adaptive state that elicits mutations. Evaluation of gene expression profile changes that occur during exposure to antibiotics will continue to improve our understanding of the development of antibiotic resistance. | 2007 | 17600486 |
| 6338 | 14 | 0.9997 | Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence. | 2016 | 28033422 |
| 6294 | 15 | 0.9997 | Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen's drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials. | 2019 | 31569631 |
| 6339 | 16 | 0.9997 | Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. | 2013 | 23145860 |
| 4704 | 17 | 0.9997 | Genetic Determinants of Salmonella Resistance to the Biofilm-Inhibitory Effects of a Synthetic 4-Oxazolidinone Analog. Biofilms formed by Salmonella enterica are a frequent source of food supply contamination. Since biofilms are inherently resistant to disinfection, new agents capable of preventing biofilm formation are needed. Synthetic analogs of 4-oxazolidinone containing natural products have shown promise as antibiofilm compounds against Gram-positive bacteria. The purpose of our study was 2-fold: to establish the antibiofilm effects and mechanism of action of a synthetic 4-oxazolidinone analog (JJM-ox-3-70) and to establish mechanisms of resistance to this compound in Salmonella enterica serovar Typhimurium (S Typhimurium). JJM-ox-3-70 inhibited biofilm formation but had no effect on cell growth. The antibiofilm effects were linked to disruption of curli fimbriae and flagellar gene expression and alteration in swimming motility, suggesting an effect on multiple cellular processes. Using a 2-step screening approach of defined multigene and single-gene deletion mutant libraries, we identified 3 mutants that produced less biofilm in the presence of JJM-ox-3-70 than the isogenic WT, with phenotypes reversed by complementation in trans Genes responsible for S Typhimurium resistance to the compound included acrB, a component of the major drug efflux pump AcrAB-TolC, and two genes of unknown function (STM0437 and STM1292). The results of this study suggest that JJM-ox-3-70 inhibits biofilm formation by indirect inhibition of extracellular matrix production that may be linked to disruption of flagellar motility. Further work is needed to establish the role of the newly characterized genes as potential mechanisms of biofilm intrinsic antimicrobial resistance.IMPORTANCE Biofilms are resistant to killing by disinfectants and antimicrobials. S. enterica biofilms facilitate long-term host colonization and persistence in food processing environments. Synthetic analogs of 4-oxazolidinone natural products show promise as antibiofilm agents. Here, we show that a synthetic 4-oxazolidinone analog inhibits Salmonella biofilm through effects on both motility and biofilm matrix gene expression. Furthermore, we identify three genes that promote Salmonella resistance to the antibiofilm effects of the compound. This work provides insight into the mechanism of antibiofilm effects of a synthetic 4-oxazolidinone analog in Gram-negative bacteria and demonstrates new mechanisms of intrinsic antimicrobial resistance in Salmonella biofilms. | 2020 | 32769186 |
| 8929 | 18 | 0.9997 | Interplay in the selection of fluoroquinolone resistance and bacterial fitness. Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug. | 2009 | 19662169 |
| 8957 | 19 | 0.9997 | Transcriptome Profiling Reveals Interplay of Multifaceted Stress Response in Escherichia coli on Exposure to Glutathione and Ciprofloxacin. We have previously reported that supplementation of exogenous glutathione (GSH) promotes ciprofloxacin resistance in Escherichia coli by neutralizing antibiotic-induced oxidative stress and by enhancing the efflux of antibiotic. In the present study, we used a whole-genome microarray as a tool to analyze the system-level transcriptomic changes of E. coli on exposure to GSH and/or ciprofloxacin. The microarray data revealed that GSH supplementation affects redox function, transport, acid shock, and virulence genes of E. coli. The data further highlighted the interplay of multiple underlying stress response pathways (including those associated with the genes mentioned above and DNA damage repair genes) at the core of GSH, offsetting the effect of ciprofloxacin in E. coli. The results of a large-scale validation of the transcriptomic data using reverse transcription-quantitative PCR (RT-qPCR) analysis for 40 different genes were mostly in agreement with the microarray results. The altered growth profiles of 12 different E. coli strains carrying deletions in the specific genes mentioned above with GSH and/or ciprofloxacin supplementation implicate these genes in the GSH-mediated phenotype not only at the molecular level but also at the functional level. We further associated GSH supplementation with increased acid shock survival of E. coli on the basis of our transcriptomic data. Taking the data together, it can be concluded that GSH supplementation influences the expression of genes of multiple stress response pathways apart from its effect(s) at the physiological level to counter the action of ciprofloxacin in E. coli. IMPORTANCE The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli. | 2018 | 29468195 |