Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
470101.0000Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica.202032097747
470310.9996Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. The emergence of antimicrobial resistance among foodborne bacteria associated with food animal production is an important global issue. We hypothesised that antibiotics generate a positive adaptive state in Salmonella that actively contributes to the development of antimicrobial resistance. This is opposed to common views that antimicrobials only act as a passive selective pressure. Microarray analysis was used to evaluate changes in gene expression that occur upon exposure of Salmonella enterica Typhimurium ATCC 14028 to 1.6 microg/mL of nalidixic acid. The results showed a significant (P < 0.02) difference (fold expression differences >2.0) in the expression of 226 genes. Comparatively repressed transcripts included Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Induced genes included efflux pumps representing all five families of multidrug-resistance efflux pumps, outer membrane lipoproteins, and genes involved in regulating lipopolysaccharide chain length. This profile suggests both enhanced antimicrobial export from the cell and membrane permeability adaptations to limit diffusion of nalidixic acid into the cell. Finally, increased expression of the error-prone DNA repair mechanisms were also observed. From these data we show a highly integrated genetic response to nalidixic acid that places Salmonella into a positive adaptive state that elicits mutations. Evaluation of gene expression profile changes that occur during exposure to antibiotics will continue to improve our understanding of the development of antibiotic resistance.200717600486
438420.9996Decoding Pseudomonas aeruginosa: Genomic insights into adaptation, antibiotic resistance, and the enigmatic role of T6SS in interbacterial dynamics. Pseudomonas aeruginosa demonstrates a remarkable capacity for adaptation and survival in diverse environments. Furthermore, its clinical importance is underscored by its intrinsic and acquired resistance to a wide range of antimicrobial agents, posing a substantial challenge in healthcare settings. Amidst this complex landscape of resistance, the Type VI Secretion System (T6SS) in P. aeruginosa adds yet another layer of intricacy and allows bacteria to engage in interbacterial competition, potentially influencing their resilience and pathogenicity. Whole genome sequencing (WGS) was conducted on the five isolates under investigation, enabling the identification of antibiotic resistance genes (ARGs) and mutations associated with resistance. All isolates exhibit class C and D β-lactamases, displaying variant differences. The Resistance-nodulation-division (RND) antibiotic efflux pumps, crucial for multidrug resistance, have been encoded chromosomally. When exploring the role of the T6SS in urinary tract infections involving other bacteria, it was noted that P. aeruginosa isolates exhibited reduced counts when co-cultivated with other bacteria. The downregulation of the tssJ gene, associated with the T6SS under bacterial stress, and the exclusion of several cluster genes in this study suggest the hypothesis of a basal state rather than an attack/defence mechanism in the initial contact.202439303957
440830.9996Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of surviving in natural niches, and in the hospital environment could also be associated with the efflux pump mechanisms. Mechanisms of efflux universally appear in all cells (eukaryotic and prokaryotic) and play the physiological important role. In prokaryote, the main functions are evasion of such naturally produced molecules, removal of metabolic products and toxins. These pumps could also be involved in an early stage of infection, such as adhesion to host cells and the colonization. Importantly, they remove commonly used antibiotics from the cell in therapy of infections caused by these bacteria. Efflux pumps exemplify a unique phenomenon in drug resistance: a single mechanism causing resistance against several different classes of antibiotics. In Acinetobacter baumannii, the AdeABC efflux pump, a member of the resistance-nodulation-cell division family (RND), has been well characterized. Aminoglicosides, tetracyclines, erythromycin, chloramphenicol, trimethoprim, fluoroquinolones, some beta-lactams, and also recently tigecycline, were found to be substrates for this pump. Drugs, as substrates for the AdeABC pump, can increase the expression of the AdeABC genes, leading to multidrug resistance (MDR). From this reason, treatment failure and death caused by Acinetobacter baumannii infections or underlying diseases are common. Because the AdeABC pump is widespread in Acinetobacter baumannii, similarly to other pumps in Gram-negative and Gram-positive bacteria, exists a need of searching a new therapeutic solutions. Specific efflux inhibitors of pumps (EPIs), including AdeABC inhibitors, could be suppress the activity of pumps and restore the sensitivity of such important bacteria as Acinetobacter baumannii to commonly used antibiotic.200819056528
627640.9996A shared mechanism of multidrug resistance in laboratory-evolved uropathogenic Escherichia coli. The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low Amp(R) and High Amp(R), respectively. Whole-genome sequencing revealed that both Low and High Amp(R) strains contained mutations in the marR, acrR, and envZ genes. The High Amp(R) strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the Amp(R) strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the Amp(R) strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the Amp(R) strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics.202438899601
470550.9996Upregulation of outer membrane porin gene ompC contributed to enhancement of azithromycin susceptibility in multidrug-resistant Escherichia coli. The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.202438441474
624660.9996The CRISPR System and MepA Multidrug Efflux Pump Linked to Antibiotic Resistance in Staphylococcus aureus. Staphylococcus aureus (S. aureus) is a major zoonotic pathogen. To investigate CRISPR carriage in S. aureus isolates from cows with mastitis and the role of the CRISPR system and efflux pumps in antibiotic resistance. We analyzed antibiotic resistance genes and CRISPR loci, sequenced spacers, and assessed correlations between CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) presence and antibiotic resistance in 234 S. aureus isolates. The changes in CRISPR sequences were examined by continuous passage of 360 generations without antibiotic pressure. Subsequently, variations in CRISPR loci and transcript levels were measured under ciprofloxacin (CIP) exposure. In addition, an S. aureus-25-mepA was constructed to evaluate changes in antimicrobial sensitivity and mepA transcript levels in both planktonic and biofilm states. Our results revealed a CRISPR loci detection rate of 7.69% among the 234 S. aureus isolates, with significantly lower rates of the antibiotic resistance genes gyrA, grlA, norA, and tet(M) in CRISPR-positive isolates compared to those in CRISPR-negative isolates (p < 0.05). CIP-resistant strains exhibited loss of repeat and spacer sequence in CRISPR loci, and the transcript abundance of these loci gradually decreased under CIP pressures, indicating that CRISPR loci deletion or transcript level downregulation under antibiotic stress may be a potential regulatory mechanism of antibiotic resistance. Correlation analysis linked CIP resistance in both planktonic and biofilm S. aureus to mepA transcript levels and biofilm integrity. Our study provides insight into the mechanism by which S. aureus develops antibiotic resistance via the CRISPR system and the MepA efflux pump, offering a theoretical foundation for monitoring the prevalence and resistance of pathogenic bacteria.202539977007
469970.9996Exposure to DDAB disinfectants promotes antimicrobial resistance to antibiotics and collateral-sensitivity to polymyxins in Salmonella enterica. SALMONELLA: as an important food-borne zoonotic pathogen, is found in soil and processing environment by human or animal feces, causing serious public health problems. Quaternary ammonium compounds (QACs) disinfectants are widely used in hospitals, livestock farms and food processing sites because of their low toxicity and broad-spectrum disinfection. However, sub-lethal levels of QACs disinfectants can induce bacteria to develop tolerance to disinfectants and cross-resistance to other antimicrobial agents. The acquired resistance will undoubtedly pose a threat to the prevention of antimicrobial resistance. In this study, Salmonella enterica SE211 was induced by the sub-inhibitory concentration and sub-lethal concentration of dodecyl dimethyl ammonium bromide (DDAB) in vitro. Following exposure to DDAB, the strains showed increased resistance to DDAB, doxycycline, amphenicols and fluoroquinolones, and increased sensitivity to colistin drugs. Phenotypic experiments showed that the induced strains exhibited changes in efflux pump activity, biofilm formation ability, motility and membrane characterization. Next-generation sequencing revealed mutations in induced strains involved in LPS-related genes (msbA, lptDE) and cationic antimicrobial peptide (CAMP) resistance-related genes (phoQ, pmrD). Transcriptome sequencing (RNA-seq) analysis revealed up-regulation of efflux pump genes and down-regulation of CAMP resistance, LPS and peptidoglycan related genes. Our study provided a theoretical basis for the potential consequences of disinfection failures and environmental residues of QACs disinfectants on the evolution of antibiotic resistance in salmonella. Furthermore, the induction of colistin sensitivity in salmonella by DDBA resulted in the emergence of collateral sensitivity, which offered a new strategy for drug combination applications to prevent the rise of colistin-resistant superbugs.202540021029
470280.9996Increased antimicrobial resistance of acid-adapted pathogenic Escherichia coli, and transcriptomic analysis of polymyxin-resistant strain. This study investigated the acid adaptation and antimicrobial resistance of seven pathogenic Escherichia coli strains and one commensal strain under nutrient-rich acidic conditions. After acid adaptation, three pathogenic E. coli survived during 100 h incubation in tryptic soy broth at pH 3.25. Acid-adapted (AA) strains showed increased resistance to antimicrobials including ampicillin, ciprofloxacin and especially polymyxins (colistin and polymyxin B), the last resort antimicrobial for multidrug-resistant Gram-negative bacteria. Enterotoxigenic E. coli strain (NCCP 13717) showed significantly increased resistance to acids and polymyxins. Transcriptome analysis of the AA NCCP 13717 revealed upregulation of genes related to the acid fitness island and the arn operon, which reduces lipopolysaccharide binding affinity at the polymyxin site of action. Genes such as eptA, tolC, and ompCF were also upregulated to alter the structure of the cell membrane, reducing the outer membrane permeability compared to the control, which is likely to be another mechanism for polymyxin resistance. This study highlights the emergence of antimicrobial resistance in AA pathogenic E. coli strains, particularly polymyxin resistance, and the mechanisms behind the increased antimicrobial resistance, providing important insights for the development of risk management strategies to effectively control the antimicrobial resistant foodborne pathogens.202439307200
78390.9995Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.202337319001
784100.9995Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.201829128373
6279110.9995Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections.201727916419
6251120.9995Overexpression of Resistance-Nodulation-Division Efflux Pump Genes Contributes to Multidrug Resistance in Aeromonas hydrophila Clinical Isolates. Aeromonas hydrophila is a Gram-negative bacterium that is a critical causative agent of infections in fish and is occasionally responsible for human infections following contact with contaminated water or food. Currently, the extensive use of antibiotics in clinical practice has led to increased number of isolates of multidrug-resistant (MDR) Aeromonas and has posed a serious public health challenge. The efflux pump system is a critical mechanism of antibiotic resistance in most Gram-negative bacteria. However, the role of resistance-nodulation-division (RND)-type efflux pumps in MDR A. hydrophila is not fully understood. We aimed to evaluate the contribution of the RND efflux pump system to MDR A. hydrophila clinical isolates. PCR results indicated a considerable variation in the presence of RND efflux pump genes in clinical isolates compared to that of the environmental reference strain ATCC7966(T). Compared to non-MDR clinical isolates, the expression levels of three putative RND efflux pump genes, AHA0021, AHA1320, and AheB, were significantly elevated in MDR strains. The minimal inhibitory concentrations of piperacillin/tazobactam, imipenem, erythromycin, and polymyxin B were significantly reduced by phenylalanine-arginine β-naphthylamide (PAβN), further supporting the contribution of the RND efflux system in MDR A. hydrophila. We provided evidence supporting the contribution of the RND efflux system to multidrug resistance in A. hydrophila clinical isolates. Further studies are warranted to elucidate the detailed mechanisms that confer intrinsic resistance to antimicrobials in A. hydrophila.202234609911
4706130.9995Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.202236286534
8842140.9995Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action. RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated. CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state.201729089020
6333150.9995Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication.201728210241
6286160.9995The mRNA expression of ompF, invA and invE was associated with the ciprofloxacin-resistance in Salmonella. Salmonella developed drug-resistance under durative antibiotic pressures pressure. The widespread prevalence of Salmonella has been associated with not only drug-resistance but also pathogenicity. Outer membrane porin proteins (OMPs) are critical for the drug resistance of bacteria. Virulence genes in Salmonella pathogenicity islands (SPIs) play key roles in the virulence of bacteria. In this study, we analyzed the expression levels of three critical genes in ciprofloxacin-resistant strains and ciprofloxacin-susceptible strains of Salmonella, including outer membrane porin protein F (ompF), virulence genes invA and invE. In the clinical ciprofloxacin-resistant strains of Salmonella, the expression level of ompF was decreased. Meanwhile, the expression levels of invA and invE were decreased except for only one strain, indicating generally decreased virulence. These results were also verified with ciprofloxacin-induced resistant strains. Thus, it was informative for understanding the drug-resistance in Salmonella. Monitoring drug-resistance and virulence relevant genes would be significant in the prevention and control of salmonellosis.202032535789
6275170.9995Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens.201930268576
4378180.9995Gene network interaction analysis to elucidate the antimicrobial resistance mechanisms in the Clostridiumdifficile. Antimicrobial resistance has caused chaos worldwide due to the depiction of multidrug-resistant (MDR) infective microorganisms. A thorough examination of antimicrobial resistance (AMR) genes and associated resistant mechanisms is vital to solving this problem. Clostridium difficile (C. difficile) is an opportunistic nosocomial bacterial strain that has acquired exogenous AMR genes that confer resistance to antimicrobials such as erythromycin, azithromycin, clarithromycin, rifampicin, moxifloxacin, fluoroquinolones, vancomycin, and others. A network of interactions, including 20 AMR genes, was created and analyzed. In functional enrichment analysis, Cellular components (CC), Molecular Functions (MF), and Biological Processes (BP) were discovered to have substantial involvement. Mutations in the rpl genes, which encode ribosomal proteins, confer resistance in Gram-positive bacteria. Full erythromycin and azithromycin cross-resistance can be conferred if more than one of the abovementioned genes is present. In the enriched BP, rps genes related to transcriptional regulation and biosynthesis were found. The genes belong to the rpoB gene family, which has previously been related to rifampicin resistance. The genes rpoB, gyrA, gyrB, rpoS, rpl genes, rps genes, and Van genes are thought to be the hub genes implicated in resistance in C. difficile. As a result, new medications could be developed using these genes. Overall, our observations provide a thorough understanding of C. difficile AMR mechanisms.202336958645
6274190.9995Transcriptomics Reveals How Minocycline-Colistin Synergy Overcomes Antibiotic Resistance in Multidrug-Resistant Klebsiella pneumoniae. Multidrug-resistant Gram-negative bacteria are a rapidly growing public health threat, and the development of novel antimicrobials has failed to keep pace with their emergence. Synergistic combinations of individually ineffective drugs present a potential solution, yet little is understood about the mechanisms of most such combinations. Here, we show that the combination of colistin (polymyxin E) and minocycline has a high rate of synergy against colistin-resistant and minocycline-intermediate or -resistant strains of Klebsiella pneumoniae. Furthermore, using transcriptome sequencing (RNA-Seq), we characterized the transcriptional profiles of these strains when treated with the drugs individually and in combination. We found a striking similarity between the transcriptional profiles of bacteria treated with the combination of colistin and minocycline at individually subinhibitory concentrations and those of the same isolates treated with minocycline alone. We observed a similar pattern with the combination of polymyxin B nonapeptide (a polymyxin B analogue that lacks intrinsic antimicrobial activity) and minocycline. We also found that genes involved in polymyxin resistance and peptidoglycan biosynthesis showed significant differential gene expression in the different treatment conditions, suggesting possible mechanisms for the antibacterial activity observed in the combination. These findings suggest that the synergistic activity of this combination against bacteria resistant to each drug alone involves sublethal outer membrane disruption by colistin, which permits increased intracellular accumulation of minocycline.202235041511