# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4693 | 0 | 1.0000 | Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria. Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.IMPORTANCEBurkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. | 2020 | 32291300 |
| 4828 | 1 | 0.9997 | Generating Transposon Insertion Libraries in Gram-Negative Bacteria for High-Throughput Sequencing. Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections. | 2020 | 32716393 |
| 4403 | 2 | 0.9997 | Multidrug efflux pumps of Gram-positive bacteria. Gram-positive organisms are responsible for some of the most serious of human infections. Resistance to front-line antimicrobial agents can complicate otherwise curative therapy. These organisms possess multiple drug resistance mechanisms, with drug efflux being a significant contributing factor. Efflux proteins belonging to all five transporter families are involved, and frequently can transport multiple structurally unrelated compounds resulting in a multidrug resistance (MDR) phenotype. In addition to clinically relevant antimicrobial agents, MDR efflux proteins can transport environmental biocides and disinfectants which may allow persistence in the healthcare environment and subsequent acquisition by patients or staff. Intensive research on MDR efflux proteins and the regulation of expression of their genes is ongoing, providing some insight into the mechanisms of multidrug recognition and transport. Inhibitors of many of these proteins have been identified, including drugs currently being used for other indications. Structural modifications guided by structure-activity studies have resulted in the identification of potent compounds. However, lack of broad-spectrum pump inhibition combined with potential toxicity has hampered progress. Further work is required to gain a detailed understanding of the multidrug recognition process, followed by application of this knowledge in the design of safer and more highly potent inhibitors. | 2016 | 27449594 |
| 6333 | 3 | 0.9997 | Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication. | 2017 | 28210241 |
| 4405 | 4 | 0.9997 | Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE: Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. | 2016 | 27520808 |
| 4406 | 5 | 0.9997 | A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection. | 2020 | 31871033 |
| 6316 | 6 | 0.9997 | A novel type of colistin resistance genes selected from random sequence space. Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura. | 2021 | 33411736 |
| 4399 | 7 | 0.9996 | The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from "curable" skin infections to only "manageable" pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria's high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen's phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes. | 2018 | 30258428 |
| 6274 | 8 | 0.9996 | Transcriptomics Reveals How Minocycline-Colistin Synergy Overcomes Antibiotic Resistance in Multidrug-Resistant Klebsiella pneumoniae. Multidrug-resistant Gram-negative bacteria are a rapidly growing public health threat, and the development of novel antimicrobials has failed to keep pace with their emergence. Synergistic combinations of individually ineffective drugs present a potential solution, yet little is understood about the mechanisms of most such combinations. Here, we show that the combination of colistin (polymyxin E) and minocycline has a high rate of synergy against colistin-resistant and minocycline-intermediate or -resistant strains of Klebsiella pneumoniae. Furthermore, using transcriptome sequencing (RNA-Seq), we characterized the transcriptional profiles of these strains when treated with the drugs individually and in combination. We found a striking similarity between the transcriptional profiles of bacteria treated with the combination of colistin and minocycline at individually subinhibitory concentrations and those of the same isolates treated with minocycline alone. We observed a similar pattern with the combination of polymyxin B nonapeptide (a polymyxin B analogue that lacks intrinsic antimicrobial activity) and minocycline. We also found that genes involved in polymyxin resistance and peptidoglycan biosynthesis showed significant differential gene expression in the different treatment conditions, suggesting possible mechanisms for the antibacterial activity observed in the combination. These findings suggest that the synergistic activity of this combination against bacteria resistant to each drug alone involves sublethal outer membrane disruption by colistin, which permits increased intracellular accumulation of minocycline. | 2022 | 35041511 |
| 4412 | 9 | 0.9996 | PmrAB, the two-component system of Acinetobacter baumannii, controls the phosphoethanolamine modification of lipooligosaccharide in response to metal ions. Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe(2+), Zn(2+), and Al(3+). A. baumannii selectively recognizes Fe(2+) rather than Fe(3+), and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al(3+), contributing to the attenuation of Al(3+) toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem. | 2024 | 38661375 |
| 6335 | 10 | 0.9996 | Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics. | 2021 | 34756069 |
| 4694 | 11 | 0.9996 | TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BACKGROUND: TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. RESULTS: Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. CONCLUSIONS: Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. | 2019 | 31606035 |
| 8969 | 12 | 0.9996 | Breaching the Barrier: Genome-Wide Investigation into the Role of a Primary Amine in Promoting E. coli Outer-Membrane Passage and Growth Inhibition by Ampicillin. Gram-negative bacteria are problematic for antibiotic development due to the low permeability of their cell envelopes. To rationally design new antibiotics capable of breaching this barrier, more information is required about the specific components of the cell envelope that prevent the passage of compounds with different physiochemical properties. Ampicillin and benzylpenicillin are β-lactam antibiotics with identical chemical structures except for a clever synthetic addition of a primary amine group in ampicillin, which promotes its accumulation in Gram-negatives. Previous work showed that ampicillin is better able to pass through the outer membrane porin OmpF in Escherichia coli compared to benzylpenicillin. It is not known, however, how the primary amine may affect interaction with other cell envelope components. This study applied TraDIS to identify genes that affect E. coli fitness in the presence of equivalent subinhibitory concentrations of ampicillin and benzylpenicillin, with a focus on the cell envelope. Insertions that compromised the outer membrane, particularly the lipopolysaccharide layer, were found to decrease fitness under benzylpenicillin exposure, but had less effect on fitness under ampicillin treatment. These results align with expectations if benzylpenicillin is poorly able to pass through porins. Disruption of genes encoding the AcrAB-TolC efflux system were detrimental to survival under both antibiotics, but particularly ampicillin. Indeed, insertions in these genes and regulators of acrAB-tolC expression were differentially selected under ampicillin treatment to a greater extent than insertions in ompF. These results suggest that maintaining ampicillin efflux may be more significant to E. coli survival than full inhibition of OmpF-mediated uptake. IMPORTANCE Due to the growing antibiotic resistance crisis, there is a critical need to develop new antibiotics, particularly compounds capable of targeting high-priority antibiotic-resistant Gram-negative pathogens. In order to develop new compounds capable of overcoming resistance a greater understanding of how Gram-negative bacteria are able to prevent the uptake and accumulation of many antibiotics is required. This study used a novel genome wide approach to investigate the significance of a primary amine group as a chemical feature that promotes the uptake and accumulation of compounds in the Gram-negative model organism Escherichia coli. The results support previous biochemical observations that the primary amine promotes passage through the outer membrane porin OmpF, but also highlight active efflux as a major resistance factor. | 2022 | 36409154 |
| 9510 | 13 | 0.9996 | The Role of Efflux Pumps in the Transition from Low-Level to Clinical Antibiotic Resistance. Antibiotic resistance is on the rise and has become one of the biggest public health challenges of our time. Bacteria are able to adapt to the selective pressure exerted by antibiotics in numerous ways, including the (over)expression of efflux pumps, which represents an ancient bacterial defense mechanism. Several studies show that overexpression of efflux pumps rarely provides clinical resistance but contributes to a low-level resistance, which allows the bacteria to persist at the infection site. Furthermore, recent studies show that efflux pumps, apart from pumping out toxic substances, are also linked to persister formation and increased spontaneous mutation rates, both of which could aid persistence at the infection site. Surviving at the infection site provides the low-level-resistant population an opportunity to evolve by acquiring secondary mutations in antibiotic target genes, resulting in clinical resistance to the treating antibiotic. Thus, this emphasizes the importance and challenge for clinicians to be able to monitor overexpression of efflux pumps before low-level resistance develops to clinical resistance. One possible treatment option could be an efflux pump-targeted approach using efflux pump inhibitors. | 2020 | 33266054 |
| 9502 | 14 | 0.9996 | Bacterial resistance to disinfectants: present knowledge and future problems. Bacterial resistance to antibiotics is a long-established, widely-studied problem. Increasingly, attention is being directed to the responses of various types of microbes to biocides (antiseptics, disinfectants and preservatives). Different groups of bacteria vary in their susceptibility to biocides, with bacterial spores being the most resistant, followed by mycobacteria, then Gram-negative organisms, with cocci generally being the most sensitive. There are wide divergencies within this general classification. Thus, (i) spores of Bacillus subtilis are less susceptible to biocides than those of Clostridium difficile: (ii) Mycobacterium chelonae strains may show high resistance to glutaraldehyde and M. avium intracellulare is generally less sensitive than M. tuberculosis; (iii) Gram-negative bacteria such as Pseudomonas aeruginosa, Providencia spp and Proteus spp may be difficult to inactivate; (iv) enterococci are less sensitive than staphylococci to biocides and antibiotic-resistant strains of Staphylococcus aureus might show low-level biocide resistance. The mechanisms involved in biocide resistance to biocides are becoming better understood. Intrinsic resistance (intrinsic insusceptibility) is found with bacterial spores, mycobacteria and Gram-negative bacteria. This resistance might, in some instances, be associated with constitutive degradative enzymes but in reality is more closely linked to cellular impermeability. The coats(s) and, to some extent, the cortex in spores, the arabinogalactan and possibly other components of the mycobacterial cell wall and the outer membrane of Gram-negative bacteria limit the concentration of active biocide that can reach the target site(s) in these bacterial cells. A special situation is found with bacteria present in biofilms, which can be considered as being an intrinsic resistance mechanism resulting from physiological (phenotypic) adaptation of cells. Acquired resistance to biocides may arise by cellular mutation or by the acquisition of genetic elements. Plasmid/transposon-mediated resistance to inorganic and organic mercury compounds by hydrolases and reductases has been extensively studied. Plasmid-mediated resistance to some other biocides in Gram-negative bacteria and in staphylococci has been described, but its significance remains uncertain. As to the future, there is a need to establish conclusively whether there is a clear-cut linkage between antibiotic and biocide resistance in non-sporulating bacteria and whether biocides can select for antibiotic resistance. Additionally, the responses to biocides of new and emerging pathogens must be assessed. At the same time, continuing research is necessary to establish further the underlying mechanisms of resistance and to provide more efficient means of bacterial inactivation. | 1999 | 10658759 |
| 4383 | 15 | 0.9996 | Importance of Core Genome Functions for an Extreme Antibiotic Resistance Trait. Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis.IMPORTANCE The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known. | 2017 | 29233894 |
| 788 | 16 | 0.9996 | Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed. | 2006 | 16614254 |
| 6320 | 17 | 0.9996 | Identification of the Extracytoplasmic Function σ Factor σ(P) Regulon in Bacillus thuringiensis. Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many β-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σ(P). We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σ(P). We compared the protein profiles of strains which either lacked σ(P) or overexpressed σ(P). We identified 8 members of the σ(P) regulon which included four β-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by β-lactams in a σ(P)-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of β-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of β-lactamases and PBPs are involved in resistance to different β-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. β-Lactams remain an important treatment option for many diseases. However, the spread of β-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding β-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σ(P), in B. thuringiensis controls expression of multiple genes involved in resistance to β-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σ(P) results in increased resistance to a wider range of β-lactam classes than any single gene could provide. | 2022 | 35080471 |
| 9509 | 18 | 0.9996 | Efflux-mediated tolerance to cationic biocides, a cause for concern? AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored. | 2022 | 36748532 |
| 4384 | 19 | 0.9996 | Decoding Pseudomonas aeruginosa: Genomic insights into adaptation, antibiotic resistance, and the enigmatic role of T6SS in interbacterial dynamics. Pseudomonas aeruginosa demonstrates a remarkable capacity for adaptation and survival in diverse environments. Furthermore, its clinical importance is underscored by its intrinsic and acquired resistance to a wide range of antimicrobial agents, posing a substantial challenge in healthcare settings. Amidst this complex landscape of resistance, the Type VI Secretion System (T6SS) in P. aeruginosa adds yet another layer of intricacy and allows bacteria to engage in interbacterial competition, potentially influencing their resilience and pathogenicity. Whole genome sequencing (WGS) was conducted on the five isolates under investigation, enabling the identification of antibiotic resistance genes (ARGs) and mutations associated with resistance. All isolates exhibit class C and D β-lactamases, displaying variant differences. The Resistance-nodulation-division (RND) antibiotic efflux pumps, crucial for multidrug resistance, have been encoded chromosomally. When exploring the role of the T6SS in urinary tract infections involving other bacteria, it was noted that P. aeruginosa isolates exhibited reduced counts when co-cultivated with other bacteria. The downregulation of the tssJ gene, associated with the T6SS under bacterial stress, and the exclusion of several cluster genes in this study suggest the hypothesis of a basal state rather than an attack/defence mechanism in the initial contact. | 2024 | 39303957 |