# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 468 | 0 | 1.0000 | Selected chitinase genes in cultured and uncultured marine bacteria in the alpha- and gamma-subclasses of the proteobacteria. PCR primers were patterned after chitinase genes in four gamma-proteobacteria in the families Alteromonadaceae and Enterobacteriaceae (group I chitinases) and used to explore the occurrence and diversity of these chitinase genes in cultured and uncultured marine bacteria. The PCR results from 104 bacterial strains indicated that this type of chitinase gene occurs in two major groups of marine bacteria, alpha- and gamma-proteobacteria, but not the Cytophaga-Flavobacter group. Group I chitinase genes also occur in some viruses infecting arthropods. Phylogenetic analysis indicated that similar group I chitinase genes occur in taxonomically related bacteria. However, the overall phylogeny of chitinase genes did not correspond to the phylogeny of 16S rRNA genes, possibly due to lateral transfer of chitinase genes between groups of bacteria, but other mechanisms, such as gene duplication, cannot be ruled out. Clone libraries of chitinase gene fragments amplified from coastal Pacific Ocean and estuarine Delaware Bay bacterioplankton revealed similarities and differences between cultured and uncultured bacteria. We had hypothesized that cultured and uncultured chitin-degrading bacteria would be very different, but in fact, clones having nucleotide sequences identical to those of chitinase genes of cultured alpha-proteobacteria dominated both libraries. The other clones were similar but not identical to genes in cultured gamma-proteobacteria, including vibrios and alteromonads. Our results suggest that a closer examination of chitin degradation by alpha-proteobacteria will lead to a better understanding of chitin degradation in the ocean. | 2000 | 10698791 |
| 467 | 1 | 0.9997 | Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Photosynthesis genes and operons of aerobic anoxygenic photosynthetic (AAP) bacteria have been examined in a variety of marine habitats, but genomic information about freshwater AAP bacteria is lacking. The goal of this study was to examine photosynthesis genes of AAP bacteria in the Delaware River. In a fosmid library, we found two clones bearing photosynthesis gene clusters with unique gene content and organization. Both clones contained 37 open reading frames, with most of those genes encoding known AAP bacterial proteins. The genes in one fosmid were most closely related to those of AAP bacteria in the Rhodobacter genus. The genes of the other clone were related to those of freshwater beta-proteobacteria. Both clones contained the acsF gene, which is required for aerobic bacteriochlorophyll synthesis, suggesting that these bacteria are not anaerobes. The beta-proteobacterial fosmid has the puf operon B-A-L-M-C and is the first example of an uncultured bacterium with this operon structure. The alpha-3-proteobacterial fosmid has a rare gene order (Q-B-A-L-M-X), previously observed only in the Rhodobacter genus. Phylogenetic analyses of photosynthesis genes revealed a possible freshwater cluster of AAP beta-proteobacteria. The data from both Delaware River clones suggest there are groups of freshwater or estuarine AAP bacteria distinct from those found in marine environments. | 2005 | 16309388 |
| 477 | 2 | 0.9995 | Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. | 2007 | 17675438 |
| 8386 | 3 | 0.9995 | Molecular evolution and population genetics of glutamate decarboxylase acid resistance pathway in lactic acid bacteria. Glutamate decarboxylase (GAD) pathway (GDP) is a major acid resistance mechanism enabling microorganisms' survival in low pH environments. We aimed to study the molecular evolution and population genetics of GDP in Lactic Acid Bacteria (LAB) to understand evolutionary processes shaping adaptation to acidic environments comparing species where the GDP genes are organized in an operon structure (Levilactobacillus brevis) versus lack of an operon structure (Lactiplantibacillus plantarum). Within species molecular population genetic analyses of GDP genes in L. brevis and L. plantarum sampled from diverse fermented food and other environments showed abundant synonymous and non-synonymous nucleotide diversity, mostly driven by low frequency changes, distributed throughout the coding regions for all genes in both species. GAD genes showed higher level of replacement polymorphism compared to transporter genes (gadC and YjeM) for both species, and GAD genes that are outside of an operon structure showed even higher level of replacement polymorphism. Population genetic tests suggest negative selection against replacement changes in all genes. Molecular structure and amino acid characteristics analyses showed that in none of the GDP genes replacement changes alter 3D structure or charge distribution supporting negative selection against non-conservative amino acid changes. Phylogenetic and between species divergence analyses suggested adaptive protein evolution on GDP genes comparing phylogenetically distant species, but conservative evolution comparing closely related species. GDP genes within an operon structure showed slower molecular evolution and higher conservation. All GAD and transporter genes showed high codon usage bias in examined LAB species suggesting high expression and utilization of acid resistance genes. Substantial discordances between species, GAD, and transporter gene tree topologies were observed suggesting molecular evolution of GDP genes do not follow speciation events. Distribution of operon structure on the species tree suggested multiple independent gain or loss of operon structure in LABs. In conclusion, GDP genes in LABs exhibit a dynamic molecular evolutionary history shaped by gene loss, gene transfer, negative and positive selection to maintain its active role in acid resistance mechanism, and enable organisms to thrive in acidic environments. | 2023 | 36777729 |
| 171 | 4 | 0.9995 | Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine. | 2018 | 29742107 |
| 3809 | 5 | 0.9995 | High abundance of virulence gene homologues in marine bacteria. Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related 'antifeeding' island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria. | 2009 | 19207573 |
| 472 | 6 | 0.9995 | MiniReview: bioinformatic study of bile responses in Campylobacterales. Campylobacter, Helicobacter and Wolinella are genera of the order Campylobacterales, belonging to the class Epsilonproteobacteria. Their habitats are various niches in the gastrointestinal tract of higher animals, where they may come into contact with bile. Microorganisms in these environments require mechanisms of resistance to the surface-active amphipathic molecules with potent antimicrobial activities present in bile. This review summarizes current knowledge on the molecular responses to bile by Campylobacterales and other bacterial species that inhabit the intestinal tract and belong to the phyla Proteobacteria, Bacteriodetes, Firmicutes and Actinobacteria. To date, 125 specific genes have been implicated in bile responses, of which 10 are found in Campylobacterales. Genome database searches, analyses of protein sequence and domain similarities, and gene ontology data integration were performed to compare the responses to bile of these bacteria. The results showed that 33 proteins of bacteria belonging to the four phyla had similarities equal to or greater than 50-46% proteins of Campylobacterales. Domain architecture analyses revealed that 151 Campylobacterales proteins had similar domain composition and organization to 60 proteins known to participate in the tolerance to bile in other bacteria. The proteins CmeB, CmeF and CbrR of Campylobacter jejuni involved in bile tolerance were homologous to 42 proteins identified in the Proteobacteria, Bacteriodetes and Firmicutes. On the other hand, the proteins CiaB, CmeA, CmeC, CmeD, CmeE and FlaAsigma(28) also involved in the response to bile of C. jejuni, did not have homologues in other bacteria. Among the bacteria inhabiting the gastrointestinal tract, the Campylobacterales seem to have evolved some mechanisms of bile resistance similar to those of other bacteria, as well as other mechanisms that appear to be characteristic of this order. | 2007 | 17266717 |
| 4368 | 7 | 0.9995 | Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BACKGROUND: The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. RESULTS: Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the gamma-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (gamma-Proteobacteria) possess similar plasmid-encoded arsC sequences. CONCLUSION: The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT) in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms. | 2003 | 12877744 |
| 465 | 8 | 0.9994 | Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert. So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. | 2015 | 25590873 |
| 3704 | 9 | 0.9994 | Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms. | 2009 | 18677528 |
| 6347 | 10 | 0.9994 | Bifidobacterium adolescentis is resistant to pyrazinamide, isoniazid, and streptomycin. The current study aims to understand the resistance of Bifidobacterium adolescentis to different anti-tubercular drugs (first-line oral tuberculosis drugs). The bacteria were grown with anti-tubercular drugs such as isoniazid, pyrazinamide, and streptomycin to better understand the resistance phenomena. It was found that even at tenfold higher concentrations, growth rates remained unchanged. In addition, a small number of bacteria were found to aggregate strongly, a property that protects against the toxicity of the drug. Further FE-SEM (Field Emission Scanning Electron Microscopy) analysis revealed that some bacteria became excessively long, elongated, and protruded on the surface. Size scattering analysis confirmed the presence of bifidobacteria in the size range of 1.0-100 μm. After whole genome sequence analysis, certain mutations were found in the relevant gene. In vitro, foam formation and growth in the presence of H(2)O(2) and HPLC (High Performance Liquid Chromatography) studies provide additional evidence for the presence of catalase. According to RAST (Rapid Annotation Using Subsystems Technology) annotation and CARD (Comprehensive Antibiotic Resistance Database analysis), there were not many components in the genome that were resistant to antibiotics. Whole genome sequence (WGS) analysis does not show the presence of bacteriocins and antibiotic resistance genes, but few hypothetical proteins were observed. 3D structure and docking studies suggest their interaction with specific ligands. | 2024 | 39609447 |
| 8385 | 11 | 0.9994 | Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. IMPORTANCE: Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease. | 2016 | 27613689 |
| 3689 | 12 | 0.9994 | Virome-associated antibiotic-resistance genes in an experimental aquaculture facility. We report the comprehensive characterization of viral and microbial communities within an aquaculture wastewater sample, by a shotgun sequencing and 16S rRNA gene profiling metagenomic approach. Caudovirales had the largest representation within the sample, with over 50% of the total taxonomic abundance, whereas approximately 30% of the total open reading frames (ORFs) identified were from eukaryotic viruses (Mimiviridae and Phycodnaviridae). Antibiotic resistance genes (ARGs) within the virome accounted for 0.85% of the total viral ORFs and showed a similar distribution both in virome and in microbiome. Among the ARGs, those encoding proteins involved in the modulation of antibiotic efflux pumps were the most abundant. Interestingly, the taxonomy of the bacterial ORFs identified in the viral metagenome did not reflect the microbial taxonomy as deduced by 16S rRNA gene profiling and shotgun metagenomic analysis. A limited number of ARGs appeared to be mobilized from bacteria to phages or vice versa, together with other bacterial genes encoding products involved in general metabolic functions, even in the absence of any antibiotic treatment within the aquaculture plant. Thus, these results confirm the presence of a complex phage-bacterial network in the aquaculture environment. | 2016 | 26738553 |
| 267 | 13 | 0.9994 | Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil. PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil. | 2005 | 15640241 |
| 6346 | 14 | 0.9994 | Identification of unknown acid-resistant genes of oral microbiotas in patients with dental caries using metagenomics analysis. Acid resistance is critical for the survival of bacteria in the dental caries oral micro-environment. However, there are few acid-resistant genes of microbiomes obtained through traditional molecular biology experimental techniques. This study aims to try macrogenomics technologies to efficiently identify acid-resistant genes in oral microbes of patients with dental caries. Total DNA was extracted from oral microbiota obtained from thirty dental caries patients and subjected to high-throughput sequencing. This data was used to build a metagenomic library, which was compared to the sequences of two Streptococcus mutant known acid-resistant genes, danK and uvrA, using a BLAST search. A total of 19 and 35 unknown gene sequences showed similarities with S. mutans uvrA and dnaK in the metagenomic library, respectively. Two unknown genes, mo-dnaK and mo-uvrA, were selected for primer design and bioinformatic analysis based on their sequences. Bioinformatics analysis predicted them encoding of a human heat-shock protein (HSP) 70 and an ATP-dependent DNA repair enzyme, respectively, closely related with the acid resistance mechanism. After cloning, these genes were transferred into competent Escherichia coli for acid resistance experiments. E. coli transformed with both genes demonstrated acid resistance, while the survival rate of E. coli transformed with mo-uvrA was significantly higher in an acidic environment (pH = 3). Through this experiment we found that identify unknown acid-resistant genes in oral microbes of patients with caries by establishing a metagenomic library is very efficient. Our results provide an insight into the mechanisms and pathogenesis of dental caries for their treatment without affecting oral probiotics. | 2021 | 33675438 |
| 4635 | 15 | 0.9994 | A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains. | 2018 | 29500262 |
| 478 | 16 | 0.9994 | Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers. | 2018 | 29967598 |
| 4662 | 17 | 0.9994 | Characterization of a multiresistant mosaic plasmid from a fish farm Sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. | 2014 | 24362420 |
| 8383 | 18 | 0.9994 | Novel insights into carbohydrate utilisation, antimicrobial resistance, and sporulation potential in Roseburia intestinalis isolates across diverse geographical locations. Roseburia intestinalis is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of R. intestinalis within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits. | 2025 | 40089923 |
| 3600 | 19 | 0.9994 | Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method. | 2004 | 15305923 |