# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4649 | 0 | 1.0000 | Factors affecting the measurement of antibiotic resistance in bacteria isolated from lake water. It is more difficult to obtain a reliable assessment of antibiotic resistance in populations of aquatic bacteria than in those populations which are well characterized (e.g. bacteria of medical and veterinary significance). Factors which influence the results include the bacterial taxa involved, their site of origin and the methods and media used to isolate and subculture the bacteria, and to perform the sensitivity tests. Examples of these effects are provided. The resistance profiles obtained with populations of aquatic pseudomonads depend on the species composition of the population. Resistance patterns in aquatic bacteria varied with the site from which they were isolated; a higher incidence of resistance was recorded along shorelines and in sheltered bays than in the open water. The inclusion of antibiotics in the media employed for primary isolation increased the number of individual and multiple resistances recorded. A similar effect was observed with increased inoculum size in the sensitivity disc method but this could be reversed by raising the incubation temperature. The medium used to conduct the test also affected the results and many aquatic bacteria failed to grow on media such as Iso-Sensitest Agar. It is recommended that the sensitivity disc method is adopted for aquatic bacteria because it permits interpretation of a wider range of response. Comparison of the incidence of antibiotic resistance in different habitats will remain meaningless, however, until comprehensive methods for the identification of bacteria are developed and the techniques used for sensitivity testing are standardized. | 1986 | 3636321 |
| 4650 | 1 | 0.9999 | Co-occurrence of resistance to different antibiotics among aquatic bacteria. BACKGROUND: Antibiotic resistance is not confined to pathogens, but is also widespread in various natural environments. In nature the microbes producing antibiotic compounds have been around for millions of years. Heavy use of antibiotics in medicine and veterinary practice may lead to the accumulation of resistance genes in microbial populations, followed by a rise in multiresistant bacteria. RESULTS: To test the extent of resistance among aquatic bacteria, we have collected 760 isolates resistant to at least one antibiotic. The phylogeny of the isolates covers a wide range of Proteobacteria, Actinobacteria and Bacteroidetes. In order to determine the extent of multiresistance, the isolates were tested on six antibiotics. As the growth rate of the different bacteria was highly variable, the classical medical resistance tests could not be used, and an alternative method considering the full growth curve was developed. In general, the overall resistances to different antibiotics could be explained by random, independent distribution. An exception to this was the resistances against tetracycline and chloramphenicol, which tended to occur in pairs. CONCLUSIONS: We conclude that there is no massive spread of multiresistance determinants in the studied environment, although some specific cases can be found, awaiting for molecular characterization of the resistance mechanisms. | 2012 | 23031674 |
| 4651 | 2 | 0.9999 | Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Several mechanisms are responsible for the ability of microorganisms to tolerate antibiotics, and the incidence of resistance to these compounds within bacterial species has increased since the commercial use of antibiotics became widespread. To establish the extent of and changes in the diversity of antibiotic resistance patterns in natural populations, we determined the MICs of five antibiotics for collections of enteric bacteria isolated from diverse hosts and geographic locations and during periods before and after commercial application of antibiotics began. All of the pre-antibiotic era strains were susceptible to high levels of these antibiotics, whereas 20% of strains from contemporary populations of Escherichia coli and Salmonella enterica displayed high-level resistance to at least one of the antibiotics. In addition to the increase in the frequency of high-level resistance, background levels, conferred by genes providing nonspecific low-level resistance to multiple antibiotics, were significantly higher among contemporary strains. Changes in the incidence and levels of antibiotic resistance are not confined to particular segments of the bacterial population and reflect responses to the increased exposure of bacteria to antimicrobial compounds over the past several decades. | 2000 | 11097921 |
| 3724 | 3 | 0.9999 | A phenotypic study of the resistome in a peri-urban ecosystem. Since the discovery of antibiotics, the dispersion of resistance genes has increased exponentially, leading to the current state in which it has become increasingly difficult to achieve an effective treatment for infectious diseases. The enormous capacity for genetic exchange between microorganisms is causing resistance genes to be able to reach all environments, even those where there is no anthropogenic impact or exposure to these drugs. In this work, a phenotypic study of the resistome has been conducted in a peri-urban ecosystem (Granada, Spain), wherein the resistance to 32 antibiotics of 710 bacterial strains isolated from 70 samples from different ecological niches with varying levels of exposure to antibiotics and anthropic action has been determined. The study of resistances using phenotypic procedures constitutes a very useful and complementary alternative to genomic methods. The obtained results show a high percentage of resistance in all the subsystems analysed, stating high multi-resistance profiles. Vancomycin and erythromycin were the antibiotics to which the highest levels of resistance were observed, whereas the lowest levels were obtained in chloramphenicol. Regarding the environments studied, the highest percentages of resistance were found in wastewater, farms and food. It should be noted that in natural soil samples (not exposed to antibiotics or anthropogenic activities), worrying levels of resistance to practically all the groups of antibiotics analysed were detected. These results support the generally accepted conclusion that an appropriate control and management of wastewater and solid waste that may contain antibiotics or resistant bacteria is really important to prevent the wide propagation of the resistome in the environment. | 2025 | 39557147 |
| 4654 | 4 | 0.9998 | Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. Several studies have recently identified the main factors contributing to the bacterial colonization of newborns and the dynamics of the infant microbiome development. However, most of these studies address large time periods of weeks or months after birth, thereby missing on important aspects of the early microbiome maturation, such as the acquisition of antibiotic resistance determinants during postpartum hospitalization. The pioneer bacterial colonization and the extent of its associated antibiotic resistance gene (ARG) dissemination during this early phase of life are largely unknown. Studies addressing resistant bacteria or ARGs in neonates often focus only on the presence of particular bacteria or genes from a specific group of antibiotics. In the present study, we investigated the gut-, the oral-, and the skin-microbiota of neonates within the first 72 h after birth using 16S rDNA sequencing approaches. In addition, we screened the neonates and their mothers for the presence of 20 different ARGs by directed TaqMan qPCR assays. The taxonomic analysis of the newborn samples revealed an important shift of the microbiota during the first 72 h after birth, showing a clear site-specific colonization pattern in this very early time frame. Moreover, we report a substantial acquisition of ARGs during postpartum hospitalization, with a very high incidence of macrolide resistance determinants and mecA detection across different body sites of the newborns. This study highlights the importance of antibiotic resistance determinant dissemination in neonates during hospitalization, and the need to investigate the implication of the mothers and the hospital environment as potential sources of ARGs. | 2020 | 32754449 |
| 4653 | 5 | 0.9998 | Modelling the effectiveness of surveillance based on metagenomics in detecting, monitoring, and forecasting antimicrobial resistance in livestock production under economic constraints. Current surveillance of antimicrobial resistance (AMR) is mostly based on testing indicator bacteria using minimum inhibitory concentration (MIC) panels. Metagenomics has the potential to identify all known antimicrobial resistant genes (ARGs) in complex samples and thereby detect changes in the occurrence earlier. Here, we simulate the results of an AMR surveillance program based on metagenomics in the Danish pig population. We modelled both an increase in the occurrence of ARGs and an introduction of a new ARG in a few farms and the subsequent spread to the entire population. To make the simulation realistic, the total cost of the surveillance was constrained, and the sampling schedule was set at one pool per month with 5, 20, 50, or 100 samples. Our simulations demonstrate that a pool of 20-50 samples and a sequencing depth of 250 million fragments resulted in the shortest time to detection in both scenarios, with a time delay to detection of change of [Formula: see text]15 months in all scenarios. Compared with culture-based surveillance, our simulation indicates that there are neither significant reductions nor increases in time to detect a change using metagenomics. The benefit of metagenomics is that it is possible to monitor all known resistance in one sampling and laboratory procedure in contrast to the current monitoring that is based on the phenotypic characterisation of selected indicator bacterial species. Therefore, overall changes in AMR in a population will be detected earlier using metagenomics due to the fact that the resistance gene does not have to be transferred to and expressed by an indicator bacteria before it is possible to detect. | 2023 | 37990114 |
| 4640 | 6 | 0.9998 | Genome analysis of probiotic bacteria for antibiotic resistance genes. To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes. | 2022 | 34989942 |
| 3405 | 7 | 0.9998 | Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%-85% of the erm gene diversity in the manures analyzed. | 2018 | 29346541 |
| 3723 | 8 | 0.9998 | Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria. INTRODUCTION: Hospitals constitute a particular source of drug residues emission, especially antibiotics considered as the most critical therapeutic classes used in hospitals. Thus, the hospital wastewater can widely spread both types of emerging pollutants, antibiotic residues and antibiotic resistance bacteria. For this reason, antibiotics usage must be monitored. This study was conducted to investigate potential antibiotic compounds which can present potential environmental hazard and promote antibiotic resistance. METHODS: The consumption-based approach was adopted to calculate predicted antibiotic concentrations in hospital wastewaters. In the process, we assessed the antibiotics potential environmental hazard, with the hazard quotient between predicted concentrations and predicted no effect concentrations intended to be protective of ecological species. In order to evaluate the hospital contribution to antibiotic resistance bacteria promotion, we also compared predicted concentrations with predicted no effect concentrations as theoretical selective resistance bacteria. RESULTS: The highest expected concentrations in hospital wastewater were found for Penicillins and Cephalosporins being the most prescribed antibiotics in our context. We noted that among this class, Ampicillin is the most hazardous compound followed by Imipenem and Gentamicin as exclusive hospital use antibiotics, in spite of their low consumption. The results showed also that Ampicillin, Amoxicillin, and Ceftriaxone had a high ratio of potential antibiotic resistance bacteria promotion, confirming the correlation found previously between abundance of resistant bacteria and the corresponding effluent antibiotic concentrations. Nevertheless, the promotion of resistance selection can also be attributed to Imipenem and Ciprofloxacin as little-used antibiotics and occur at low to moderate levels in hospital wastewater. CONCLUSION: This study identified the profile antibiotics consumption and their potential environmental hazard contribution and antibiotic resistant bacteria promotion. It can help decision-makers make appropriate management decisions, especially preventive measures related to antibiotic use pattern, as neither dilution nor treatment can eliminate antibiotic residues and antibiotic resistance genes. | 2022 | 34113952 |
| 3872 | 9 | 0.9998 | Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. | 2014 | 24636906 |
| 4652 | 10 | 0.9998 | Antibiotic-resistant soil bacteria in transgenic plant fields. Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance. Our results indicate that soil bacteria are naturally resistant to a broad spectrum of beta-lactam antibiotics, including the third cephalosporin generation, which has a slightly stronger discriminating effect on soil isolates than other cephalosporins. These high resistance levels for a wide range of antibiotics are partly due to the polymorphism of bla genes, which occur frequently among soil bacteria. The blaTEM116 gene of the transgenic corn Bt176 investigated here is among those frequently found, thus reducing any risk of introducing a new bacterial resistance trait from the transgenic material. In addition, no significant differences were observed in bacterial antibiotic-resistance levels between transgenic and nontransgenic corn fields, although the bacterial populations were different. | 2008 | 18292221 |
| 3404 | 11 | 0.9998 | Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. The high use of antibiotics in human and veterinary medicine has led to a wide spread of antibiotics and antimicrobial resistance into the environment. In recent years, various studies have shown that antibiotic residues, resistant bacteria and resistance genes, occur in aquatic environments and that clinical wastewater seems to be a hot spot for the environmental spread of antibiotic resistance. Here a representative statistical analysis of various sampling points is presented, containing different proportions of clinically influenced wastewater. The statistical analysis contains the calculation of the odds ratios for any combination of antibiotics with resistant bacteria or resistance genes, respectively. The results were screened for an increased probability of detecting resistant bacteria, or resistance genes, with the simultaneous presence of antibiotic residues. Positive associated sets were then compared, with regards to the detected median concentration, at the investigated sampling points. All results show that the sampling points with the highest proportion of clinical wastewater always form a distinct cluster concerning resistance. The results shown in this study lead to the assumption that ciprofloxacin is a good indicator of the presence of multidrug resistant P. aeruginosa and extended spectrum β-lactamase (ESBL)-producing Klebsiella spec., Enterobacter spec. and Citrobacter spec., as it positively relates with both parameters. Furthermore, a precise relationship between carbapenemase genes and meropenem, regarding the respective sampling sites, could be obtained. These results highlight the role of clinical wastewater for the dissemination and development of multidrug resistance. | 2020 | 31622887 |
| 3830 | 12 | 0.9998 | Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance. | 2019 | 30530714 |
| 4647 | 13 | 0.9998 | Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection. | 2016 | 26872140 |
| 4730 | 14 | 0.9998 | Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures. High-pressure processing is one of the most promising novel food preservation methods that is increasingly used in the food industry. Its biggest advantage is that it is a nonthermal method that ensures the microbiological safety of the product while maintaining other features, including nutritional value. If products made with starter cultures are subjected to high-pressure treatment, the process parameters should be selected so as not to eliminate all microorganisms in the product. The aim of the study was to investigate if carrying antibiotic resistance genes affects the survival of lactic acid bacteria (Lactococcus and the former Lactobacillus) strains during high-pressure treatment. Survival was assessed using the plate count method. It was shown that the strains carrying antibiotic resistance genes showed a lower survival to high pressure. This might be explained by the phenomenon of fitness cost, consisting in a reduced adaptation of antibiotic-resistant strains related to metabolic expenditure. The obtained results indicate the need for further research in this field and the need to select food processing parameters depending on the strains intentionally included in the food. | 2022 | 35681924 |
| 3884 | 15 | 0.9998 | Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain. | 2012 | 23133629 |
| 4570 | 16 | 0.9998 | Detection of sulfonamide resistance genes via in situ PCR-FISH. Due to the rising use of antibiotics and as a consequence of their concentration in the environment an increasing number of antibiotic resistant bacteria is observed. The phenomenon has a hazardous impact on human and animal life. Sulfamethoxazole is one of the sulfonamides commonly detected in surface waters and soil. The aim of the study was to detect sulfamethoxazole resistance genes in activated sludge biocenosis by use of in situ PCR and/or hybridization. So far no FISH probes for the detection of SMX resistance genes have been described in the literature. We have tested common PCR primers used for SMX resistance genes detection as FISH probes as well as a combination of in situ PCR and FISH. Despite the presence of SMX resistance genes in activated sludge confirmed via traditional PCR, the detection of the genes via microscopic visualization failed. | 2014 | 25115110 |
| 4181 | 17 | 0.9998 | The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics. | 2006 | 16956128 |
| 3818 | 18 | 0.9998 | A study of the transfer of tetracycline resistance genes between Escherichia coli in the intestinal tract of a mouse and a chicken model. Experiments to demonstrate the transfer of genes within a natural environment are technically difficult because of the unknown numbers and strains of bacteria present, as well as difficulties designing adequate control experiments. The results of such studies should be viewed within the limits of the experimental design. Most experiments to date have been based on artificial models, which only give approximations of the real-life situation. The current study uses more natural models and provides information about tetracycline resistance as it occurs in wild-type bacteria within the environment of the normal intestinal tract of an animal. Tetracycline sensitive, nalidixic acid resistant Escherichia coli isolates of human origin were administered to mice and chicken animal models. They were monitored for acquisition of tetracycline resistance from indigenous or administered donor E. coli. Five sets of in vivo experiments demonstrated unequivocal transfer of tetracycline resistance to tetracycline sensitive recipients. The addition of tetracycline in the drinking water of the animals increased the probability of transfer between E. coli strains originating from the same animal species. The co-transfer of unselected antibiotic resistance in animal models was also demonstrated. | 2006 | 16930278 |
| 4572 | 19 | 0.9998 | Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains. | 2023 | 36462825 |