Glycopeptide-resistance transferability from vancomycin-resistant enterococci of human and animal source to Listeria spp. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
461301.0000Glycopeptide-resistance transferability from vancomycin-resistant enterococci of human and animal source to Listeria spp. AIMS: The glycopeptide-resistance transferability from vancomycin-resistant enterococci (VRE) of clinical and animal origin to different species of Listeria was investigated. METHODS AND RESULTS: Of 36 matings, performed on membrane filter, the glycopeptide resistance was successfully transferred in six attempts, five with donors of animal origin and only one with donors from clinical source. The acquired glycopeptide resistance in Listeria transconjugants was confirmed by the presence of the conjugative plasmid band and by the amplification of the 732-bp fragment of vanA gene in transferred plasmids. CONCLUSIONS: Despite the lower number of bacteria used in this study, the source of enterococci influenced the outcome of mating. Moreover transferred VanA plasmid induced a different expression in Listeria transconjugants, suggesting that gene expression might be influenced by species affiliation of recipients. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data strengthen the opinion that enterococci are an important source of resistance genes for Listeria via the transfer of movable genetic elements. As these strains are commonly found in the same habitats, a horizontal spread of glycopeptide resistance in Listeria spp. could be possible.200415548299
461210.9999Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. The food chain is considered one of the main routes of antibiotic resistance diffusion between animal and human population. The resistance to antimicrobial agents among enterococci could be related to the efficient exchange of transferable genetic elements. In this study a sausage model was used to evaluate the persistence of antibiotic resistant enterococci during meat fermentation and to assess horizontal gene transfer among bacteria involved in meat fermentation. Enterococcus faecalis OG1rf harbouring either pCF10 or pAMβ1 plasmid was used as donor strain. The analysis of population dynamics during fermentation confirmed that the human isolate E. faecalis OG1rf was able to colonize the meat ecosystem with similar growth kinetics to that of food origin enterococci and to transfer the mobile genetic elements coding for tetracycline and erythromycin resistances. Transconjugant strains were detected after only two days of fermentation and increased their numbers during ripening even in the absence of selective antibiotic pressure. By means of culture-dependent and -independent molecular techniques, transconjugant strains carrying both tetracycline and erythromycin resistance genes were identified in enterococci, pediococci, lactobacilli and staphylococci groups. Our results suggest that the sausage model provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among food microbiota.201222365347
359720.9999Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.200111157217
460530.9998Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine. The resistance genes and their surroundings on three self-transmissible plasmids found in Escherichia coli of the enteric normal flora of healthy pigs have been characterized. The resistance elements found are similar to those commonly found in clinical isolates, like the transposon Tn1721 including the Tet A tetracycline resistance determinant, Tn10 with the Tet B determinant, Tn21 including a class 1 integron with the aadA1a cassette inserted, sulII encoding sulfonamide resistance, and the strA-strB genes responsible for streptomycin resistance. The plasmids were able to mobilize into various recipients, including swine pathogens, zoonotic bacteria, and commensals when conjugation experiments were carried out. Transfer of plasmids did not require optimal conditions concerning nutrition and temperature as plasmids were transferred in 0.9% saline at room temperature, suggesting that in vivo transfer might be possible. This study shows that transferable resistance elements appearing in normal flora bacteria from animals are similar to those commonly found in clinical isolates of human origin. The results indicate a probable communication between pathogens and the normal flora with respect to exchange of resistance factors.200111442346
359440.9998Directed Recovery and Molecular Characterization of Antibiotic Resistance Plasmids from Cheese Bacteria. Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain.202134360567
339850.9998Ubiquity of R factor-mediated antibiotic resistance in the healthy population. An attempt was made to assess the occurrence of R factor-mediated antibiotic resistance in the healthy population. Samples of aerobic, gram-negative intestinal bacteria from men from various parts of the country at military conscription were analysed for transferable drug resistance. The obtained frequency, about 15% of R factor carriers in the studied group, was interpreted to reflect the existence of a reservoir of R factors, from which resistant, pathogenic bacteria could be selected under antibiotic therapy. Resistance to tetracycline, streptomycin and sulfonamides dominated among the identified R factor-borne resistance traits.1977320655
461160.9998Bacteriophage-mediated transduction of antibiotic resistance in enterococci. AIMS: Temperate bacteriophages are bacterial viruses that transfer genetic information between bacteria. This phenomenon is known as transduction, and it is important in acquisition of bacterial virulence genes and antimicrobial resistance determinants. The aim of this study was to demonstrate the role of bacteriophages in gene transfer (antibiotic resistance) in enterococci. METHODS AND RESULTS: Three bacteriophages from environmental samples isolated on pig host strains of Enterococcus gallinarum and Enterococcus faecalis were evaluated in transduction experiments. Antibiotic resistance was transferred from Ent. gallinarum to Ent. faecalis (tetracycline resistance) and from Ent. faecalis to Enterococcus faecium, Enterococcus hirae/durans and Enterococcus casseliflavus (gentamicin resistance). CONCLUSIONS: Bacteriophages play a role in transfer of antibiotic resistance determinants in enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms previous suggestions on transduction in enterococci, in particular on interspecies transduction. Interspecies transduction is significant because it widens the range of recipients involved in antimicrobial resistance transfer.201121395627
997470.9998Role of Plasmids in Co-Selection of Antimicrobial Resistances Among Escherichia coli Isolated from Pigs. Co-selection is thought to occur when resistance genes are located on the same mobile genetic element. However, this mechanism is currently poorly understood. In this study, complete circular plasmids from swine-derived Escherichia coli were sequenced with short and long reads to confirm that resistance genes involved in co-resistance were co-transferred by the same plasmid. Conjugative transfer tests were performed, and multiple resistance genes were transmitted. The genes possessed by the donor, transconjugant, and plasmid of the donor were highly similar. In addition, the sequences of the plasmid of the donor and the plasmid of the transconjugant were almost identical. Resistance genes associated with statistically significant combinations of antimicrobial use and resistance were co-transmitted by the same plasmid. These results suggest that resistance genes may be involved in co-selection by their transfer between bacteria on the same plasmid.202337540099
452780.9998Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus.201728390978
490890.9998Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.202438191970
3581100.9998Monitoring horizontal antibiotic resistance gene transfer in a colonic fermentation model. The human microbiota is suggested to be a reservoir of antibiotic resistance (ABR) genes, which are exchangeable between transient colonizers and residing bacteria. In this study, the transfer of ABR genes from Enterococcus faecalis to Listeria monocytogenes and to commensal bacteria of the human gut microbiota was demonstrated in a colonic fermentation model. In the first fermentation, an E. faecalis donor harboring the marked 50-kb conjugative plasmid pRE25(*) and a chromosomal marker was co-immobilized with L. monocytogenes and infant feces. In this complex environment, the transfer of pRE25(*) to L. monocytogenes was observed. In a second fermentation, only the E. faecalis donor and feces were co-immobilized. Enumeration of pRE25(*) and the donor strain by quantitative PCR revealed an increasing ratio of pRE25(*) to the donor throughout the 16-day fermentation, indicating the transfer of pRE25(*) . An Enterococcus avium transconjugant was isolated, demonstrating that ABR gene transfer to gut commensals occurred. Moreover, pRE25(*) was still functional in both the E. avium and the L. monocytogenes transconjugant and transmittable to other genera in filter mating experiments. Our study reveals that the transfer of a multiresistance plasmid to commensal bacteria in the presence of competing fecal microbiota occurs in a colonic model, suggesting that commensal bacteria contribute to the increasing prevalence of antibiotic-resistant bacteria.201121658089
3580110.9998Transfer of plasmid-mediated resistance to tetracycline in pathogenic bacteria from fish and aquaculture environments. The transferability of a large plasmid that harbors a tetracycline resistance gene tet(S), to fish and human pathogens was assessed using electrotransformation and conjugation. The plasmid, originally isolated from fish intestinal Lactococcus lactis ssp. lactis KYA-7, has potent antagonistic activity against the selected recipients (Lactococcus garvieae and Listeria monocytogenes), preventing conjugation. Therefore the tetracycline resistance determinant was transferred via electroporation to L. garvieae. A transformant clone was used as the donor in conjugation experiments with three different L. monocytogenes strains. To our knowledge, this is the first study showing the transfer of an antibiotic resistance plasmid from fish-associated lactic bacteria to L. monocytogenes, even if the donor L. garvieae was not the original host of the tetracycline resistance but experimentally created by electroporation. These results demonstrate that the antibiotic resistance genes in the fish intestinal bacteria have the potential to spread both to fish and human pathogens, posing a risk to aquaculture and consumer safety.200919236483
5995120.9998In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. The ability of 14 Lactobacillus strains, isolated from fermented dry sausages, to transfer tetracycline resistance encoded by tet(M) through conjugation was examined using filter mating experiments. Seven out of 14 tetracycline-resistant Lactobacillus isolates were able to transfer in vitro this resistance to Enterococcus faecalis at frequencies ranging from 10(-4) to 10(-6) transconjugants per recipient. Two of these strains could also transfer their resistance to Lactococcus lactis subsp. lactis, whereas no conjugal transfer to a Staphylococcus aureus recipient was found. These data suggest that meat lactobacilli might be reservoir organisms for acquired resistance genes that can be spread to other lactic acid bacteria. In order to assess the risk of this potential hazard, the magnitude of transfer along the food chain merits further research.200312900030
4721130.9998Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group. BACKGROUND: Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. RESULTS: In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. CONCLUSION: The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine.200919814790
4678140.9998Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.202134277757
3392150.9998Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. AIMS: Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. METHODS AND RESULTS: Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. CONCLUSIONS: Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. SIGNIFICANCE AND IMPACT OF STUDY: Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection.201424797476
4593160.9998Origin, evolution and dissemination of antibiotic resistance genes. Comparison of resistance genes from different sources support the hypothesis that the antibiotic-producing microorganisms are the source of resistant determinants present in clinical isolates. There is also evidence that Gram-positive cocci (staphylococci and streptococci) can serve as a reservoir of resistance genes for Gram-negative bacteria.19872856426
5650170.9998High-level trimethoprim resistance in urinary bacteria. The results of a three year evaluation of the incidence and type of trimethoprim resistance in pathogens responsible for significant bacteriuria in a general hospital in Edinburgh UK, are presented and compared to results of a previous study. In the present study, trimethoprim resistance was 50% more frequent in bacteria isolated from men and nearly twice as frequent in bacteria from elderly patients. However, the proportion of trimethoprim resistant strains fell annually when resistance was measured at trimethoprim concentrations of both 10 mg/l and 1000 mg/l. The proportion of strains able to transfer trimethoprim resistance also fell by half, and there was some movement of trimethoprim resistance transposons into the bacterial chromosome. These results suggest that migration of high-level trimethoprim resistance genes into the permanent location of the bacterial chromosome is occurring.19863527699
3600180.9998Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.200415305923
3369190.9998On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli. Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1(+) conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1(+) plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1(+) clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.201931247256