The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
460001.0000The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. The Staphylococcus sciuri species group includes five species that are most often presented as commensal animal-associated bacteria. The species of this group are Staphylococcus sciuri (with three subspecies), Staphylococcus lentus, Staphylococcus vitulinus, Staphylococcus fleurettii and Staphylococcus stepanovicii. Members of these group are commonly found in a broad range of habitats including animals, humans and the environment. However, those species have been isolated also from infections, both in veterinary and human medicine. Members of this group have been shown to be pathogenic, though infections caused by these species are infrequent. Furthermore, members of the S. sciuri species group have also been found to carry multiple virulence and resistance genes. Indeed, genes implicated in biofilm formation or coding for toxins responsible of toxic shock syndrome and multi-resistance, similar to those carried by Staphylococcus aureus, were detected. This group may thereby represent a reservoir for other bacteria. Despite its recognized abundance as commensal bacteria and its possible role as reservoir of virulence and resistance genes for other staphylococci, the S. sciuri species group is often considered harmless and, as such, not as well documented as, for example, S. aureus. More investigation into the role of the S. sciuri species group as commensal and pathogenic bacteria is required to fully assess its medical and veterinary importance.201424629775
460110.9999CRISPR tracking reveals global spreading of antimicrobial resistance genes by Staphylococcus of canine origin. The close contact between pets and their owners is a potential source for microorganisms and genetic material exchange. Staphylococcus species considered as harmless inhabitants of animals' and humans' microbiota can act as reservoirs of antimicrobial resistance genes to more virulent species, thereby increasing their potential to resist drug therapy. This process could be inhibited by the antiplasmid immunity conferred by CRISPR systems. On the other hand, CRISPR spacer sequences can be explored as molecular clocks to track the history of genetic invasion suffered by a bacterial strain. To understand better the role of domestic dogs in human health as an antimicrobial resistance genes source, we analyzed 129 genomes of Staphylococcus strains of canine origin for the presence of CRISPR systems. Only 8% of the strains were positive for CRISPR, which is consistent with Staphylococcus role as gene reservoirs. The plasmidial origin or some spacers confirms the unsuccessful attempt of plasmid exchange in strains carrying CRISPRs. Some of these systems are within a staphylococcal cassette chromosome mec (SCCmec), sharing 98% of identity between their harboring strains. These CRISPRs' spacers reveal that this SCCmec was transferred between canine S. pseudintermedius strains, then to S. schleiferi and to Staphylococcus strains isolated from human beings. Our findings shows genetic evidence for the global spreading of pathogenic bacteria and the antimicrobial resistance genes carried by them and reinforce that, in the age of antimicrobial resistance, it is imperative that drug therapies consider the integrated nature of the relationship between pets and humans.201931030846
463920.9998Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof.202337762186
463430.9998Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health.202540202320
479840.9998Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA.200818811239
459550.9998Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids. Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen.201627190144
395160.9998Diversity and genetic lineages of environmental staphylococci: a surface water overview. Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.202032949464
463070.9997Genome Analysis of the Enterococcus faecium Entfac.YE Prophage. BACKGROUND: Bacteriophages are viruses that infect bacteria. Bacteriophages are widely distributed in various environments. The prevalence of bacteriophages in water sources, especially wastewaters, is naturally high. These viruses affect evolution of most bacterial species. Bacteriophages are able to integrate their genomes into the chromosomes of their hosts as prophages and hence transfer resistance genes to the bacterial genomes. Enterococci are commensal bacteria that show high resistance to common antibiotics. For example, prevalence of vancomycin-resistant enterococci has increased within the last decades. METHODS: Enterococcal isolates were isolated from clinical samples and morphological, phenotypical, biochemical, and molecular methods were used to identify and confirm their identity. Bacteriophages extracted from water sources were then applied to isolated Enterococcus faecium (E. faecium). In the next step, the bacterial genome was completely sequenced and the existing prophage genome in the bacterial genome was analyzed. RESULTS: In this study, E. faecium EntfacYE was isolated from a clinical sample. The EntfacYE genome was analyzed and 88 prophage genes were identified. The prophage content included four housekeeping genes, 29 genes in the group of genes related to replication and regulation, 25 genes in the group of genes related to structure and packaging, and four genes belonging to the group of genes associated with lysis. Moreover, 26 genes were identified with unknown functions. CONCLUSION: In conclusion, genome analysis of prophages can lead to a better understanding of their roles in the rapid evolution of bacteria.202235509366
479380.9997Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.202033402829
459390.9997Origin, evolution and dissemination of antibiotic resistance genes. Comparison of resistance genes from different sources support the hypothesis that the antibiotic-producing microorganisms are the source of resistant determinants present in clinical isolates. There is also evidence that Gram-positive cocci (staphylococci and streptococci) can serve as a reservoir of resistance genes for Gram-negative bacteria.19872856426
4799100.9997Glycopeptide-resistant enterococci: a decade of experience. Since their first description in 1988, glycopeptide-resistant enterococci (GRE) have emerged as a significant cause of nosocomial infections and colonisations, particularly in Europe and the USA. Two major genetically distinct forms of acquired resistance, designated VanA and VanB, are recognised, although intrinsic resistance occurs in some enterococcal species (VanC) and a third form of acquired resistance (VanD) has been reported recently. The biochemical basis of each resistance mechanism is similar; the resistant enterococci produce modified peptidoglycan precursors that show decreased binding affinity for glycopeptide antibiotics. Although VanA resistance is detected readily in the clinical laboratory, the variable levels of vancomycin resistance associated with the other phenotypes makes detection less reliable. Under-reporting of VanB resistance as a result of a lower detection rate may account, in part, for the difference in the numbers of enterococci displaying VanA and VanB resistance referred to the PHLS Laboratory of Hospital Infection. Since 1987, GRE have been referred from >1100 patients in almost 100 hospitals, but 88% of these isolates displayed the VanA phenotype. It is possible that, in addition to the problems of detection, there may be a real difference in the prevalence of VanA and VanB resistance reflecting different epidemiologies. Our present understanding of the genetic and biochemical basis of these acquired forms of glycopeptide resistance has been gained mainly in the last 5 years. However, these relatively new enterococcal resistances appear still to be evolving; there have now been reports of transferable VanB resistance associated with either large chromosomally borne transposons or plasmids, genetic linkage of glycopeptide resistance and genes conferring high-level resistance to aminoglycoside antibiotics, epidemic strains of glycopeptide-resistant Enterococcus faecium isolated from multiple patients in numerous hospitals, and of glycopeptide dependence (mutant enterococci that actually require these agents for growth). The gene clusters responsible for VanA and VanB resistance are located on transposable elements, and both transposition and plasmid transfer have resulted in the dissemination of these resistance genes into diverse strains of several species of enterococci. Despite extensive research, knowledge of the origins of these resistances remains poor. There is little homology between the resistance genes and DNA from either intrinsically resistant gram-positive genera or from the soil bacteria that produce glycopeptides, which argues against direct transfer to enterococci from these sources. However, recent data suggest a more distant, evolutionary relationship with genes found in glycopeptide-producing bacteria. In Europe, VanA resistance occurs in enterococci isolated in the community, from sewage, animal faeces and raw meat. This reservoir suggests that VanA may not have evolved in hospitals, and its existence has been attributed, controversially, to use of the glycopeptide avoparcin as a growth promoter, especially in pigs and poultry. However, as avoparcin has never been licensed for use in the USA and, to date, VanB resistance has not been confirmed in non-human enterococci, it is clear that the epidemiology of acquired glycopeptide resistance in enterococci is complex, with many factors contributing to its evolution and global dissemination.19989788808
5743110.9997Identification of novel antimicrobial resistance genes from microbiota on retail spinach. BACKGROUND: Drug resistance genes and their mobile genetic elements are frequently identified from environmental saprophytic organisms. It is widely accepted that the use of antibiotics in animal husbandry selects for drug resistant microorganisms, which are then spread from the farm environment to humans through the consumption of contaminated food products. We wished to identify novel drug resistance genes from microbial communities on retail food products. Here, we chose to study the microbial communities on retail spinach because it is commonly eaten raw and has previously been associated with outbreaks of bacterial infections. RESULTS: We created metagenomic plasmid libraries from microbiota isolated from retail spinach samples. We identified five unique plasmids that increased resistance to antimicrobial drugs in the E. coli host. These plasmids were identified in E. coli that grew on plates that contained ampicillin (pAMP), aztreonam (pAZT), ciprofloxacin (pCIP), trimethoprim (pTRM), and trimethoprim-sulfamethoxazole (pSXT). We identified open reading frames with similarity to known classes of drug resistance genes in the DNA inserts of all 5 plasmids. These drug resistance genes conferred resistance to fluoroquinolones, cephalosporins, and trimethoprim, which are classes of antimicrobial drugs frequently used to treat human Gram negative bacterial infections. These results show that novel drug resistance genes are found in microbiota on retail produce items. CONCLUSIONS: Here we show that microbiota of retail spinach contains DNA sequences previously unidentified as conferring antibiotic resistance. Many of these novel sequences show similarity to genes found in species of bacteria, which have previously been identified as commensal or saprophytic bacteria found on plants. We showed that these resistance genes are capable of conferring clinically relevant levels of resistance to antimicrobial agents. Food saprophytes may serve as an important reservoir for new drug-resistance determinants in human pathogens.201324289541
6247120.9997Molecular basis and evolutionary cost of a novel macrolides/lincosamides resistance phenotype in Staphylococcus haemolyticus. Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure.202337724875
3937130.9997Design of a system for monitoring antimicrobial resistance in pathogenic, zoonotic and indicator bacteria from food animals. DANMAP is a Danish programme for integrated monitoring of and research on antimicrobial resistance in bacteria from food animals, food and humans. The paper describes how bacteria from broilers, pigs, and cattle are collected, as well as the procedures for data handling and presentation of results. The bacteria from animals include certain pathogens, selected so that they are representative for submissions to Danish diagnostic laboratories, as well as zoonotic bacteria (Campylobacter, Salmonella and Yersinia) and indicator bacteria (E. coli, E. faecium and E. faecalis), from samples collected at abattoirs. The latter samples are selected so that they are representative of the respective animal populations. Therefore, the apparent prevalence of antimicrobial resistance in the populations may be calculated. The isolates are identified to species level and the results of susceptibility testing are stored as continuous variables. All isolates are maintained in a strain collection so that they are available for subsequent research projects. The data handling facilities makes it possible to present results as percent resistant isolates or as the apparent prevalence of resistance in the population, or alternatively as graphical distributions of mm inhibition zones or MIC values. Computer routines have been established that make it possible to detect specific phenotypic expressions of resistance that may be of particular interest.199910783720
4635140.9997A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve. Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains.201829500262
4754150.9997Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria.200717659211
4965160.9997Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla (OXA-493) and bla (OXA-576) genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla (OXA-493) gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.202033042043
4931170.9997Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil. Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.202438904697
4599180.9997Global acquisition of genetic material from different bacteria into the staphylococcal cassette chromosome elements of a Staphylococcus epidermidis isolate. Staphylococcus epidermidis has been suggested as a main reservoir of methicillin resistance and virulence genes facilitating the evolution of Staphylococcus aureus as a successful pathogen. However, it remains a mystery where and how S. epidermidis obtains these numerous genes to serve as the reservoir. In this study, methicillin-resistant S. epidermidis isolate NW32 from a mastitic milk sample was sequenced and its staphylococcal cassette chromosome (SCC) elements were characterised. The SCC composite island covered 3.5% of the genome and consisted of three intact SCC elements carrying resistance genes against β-lactam antibiotics, several heavy metals and polyamines as well as genes for utilisation of sorbitol as a carbon source. Analysis of the postulated evolutionary route suggested that the three SCC elements were assembled from genetic material from various bacterial species (staphylococci, streptococci, salinicocci and Lysinibacillus) from three habitats (human, soil and cow) in different countries (Asia, North America, South America and Europe). We propose that the hsdS restriction-modification profile and the lack of CRISPR (clustered regularly interspaced short palindromic repeat) sequences in this bacterium may facilitate the genetic exchange of SCC elements among different staphylococcal species.201728705673
4519190.9997Antimicrobial Drug Resistance in Fish Pathogens. Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in Penaeus monodon larvae caused by Vibrio harveyi resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera Aeromonas, Yersinia, Photobacterium, Edwardsiella, and Vibrio. Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens (Aeromonas spp., Yersinia spp., Photobacterium spp., Edwardsiella spp., and Vibrio spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens (Salmonella enterica serotypes, Escherichia coli, and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments.201829372680