# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4586 | 0 | 1.0000 | Emergence of multi drug resistance among soil bacteria exposing to insecticides. Impacts of pesticide exposure on the soil microbial flora and cross resistance to antibiotics have not been well documented. Development of antibiotic resistance is a common issue among soil bacteria which are exposing to pesticides continuously at sub-lethal concentration. The present study was focused to evaluate the correlation between pesticide exposures and evolution of multi drug resistance among isolates collected from soil applied with insecticides. Twenty five insecticide (Monochrotophos) degrading bacteria were isolated from contaminated agricultural soil. The bacterial isolates Bacillus Sps, Bacillus cereus, Bacillus firmus and Bacillus thuringiensis were found to be resistant against chloramphenical, monochrotophos, ampicillin, cefotaxime, streptomycin and tetracycline antibiotics used. Involvement of plasmid in drug as well as insecticide resistant was confirmed through plasmid curing among selected bacterial strains. Bacillus Sps (MK-07), Bacillus cereus (MK-11), Bacillus firmus (MK-13) and Bacillus thuringiensis (MK-24) lost their resistant against insecticides and antibiotics once after removal of plasmid by exposing to 2% sodium dodecyl sulphate. The plasmid was transformed back to bacteria which produced similar derivatives when cultured in Minimal Salt medium (pH 7.0) supplemented with 0.4% of insecticide. Homology modeling was used to prove that organophosphorus hydrolase and able to metabolize all the antibiotics showed positive interaction with high docking score. The present study revealed that persistent of insecticides in the agricultural soil may lead to increasing development of multidrug resistance among soil bacteria. | 2017 | 28192223 |
| 4571 | 1 | 0.9997 | Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood. | 2014 | 24956077 |
| 4572 | 2 | 0.9997 | Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains. | 2023 | 36462825 |
| 4573 | 3 | 0.9997 | High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes. | 2022 | 35953184 |
| 4581 | 4 | 0.9996 | Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens. | 2014 | 25408688 |
| 4574 | 5 | 0.9996 | Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana. The use of antibiotics as growth promoters in livestock, banned in all EU member states in January 2006, has led to selection of antibiotic resistant strains within environmental bacteria, including gram-positive, non pathogenic bacteria that colonize the GI tract of humans and animals. In Italy and in other Mediterranean countries, fermented foods employing environmental bacteria pre-existing in the raw substrates, rather than industrial starters of defined genotype, represent a significant proportion of cheese and meat products carrying the official PDO designation (Protected Designation of Origin). Our study focused on the microbiological and molecular analysis of lactobacilli and of other lactic acid bacteria (LABs) isolated from the Italian PDO product water buffalo Mozzarella cheese, with the aim of identifying genes responsible for tetracycline, erythromycin and kanamycin resistance. We isolated over 500 LAB colonies from retail products, as well as from raw milk and natural whey starters employed in their production. Microbiological analysis showed that about 50% of these isolates were represented by lactobacilli, which were further characterized in terms of species and strain composition, as well as by determining phenotypic and genotypic antibiotic resistance. To overcome the limits of culture-dependent approaches that select only cultivable species, we have also extracted total DNA from the whole microbiome present in the cheese and investigated the presence of specific antibiotic resistance genes with molecular approaches. Genetic determinants of antibiotic resistance were identified almost exclusively in bacteria isolated from the raw, unprocessed substrates, while the final, marketed products did not contain phenotypically resistant lactobacilli, i.e. displaying MIC values above the microbiological breakpoint. Overall, our results suggest that the traditional procedures necessary for manufacturing of this typical cheese, such as high temperature treatments, lead to a final product with low bacterial counts, lower biodiversity and lack of significant presence of antibiotic resistant lactobacilli. | 2008 | 18990462 |
| 5289 | 6 | 0.9996 | Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems. | 2016 | 27065407 |
| 3697 | 7 | 0.9996 | Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside) collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M), tet(L), tet(O)] and macrolide [erm(A), erm(B) and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M) and tet(L) in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin) highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O), erm(B) and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an underestimated health risk and deserves further investigation. | 2013 | 23638152 |
| 3696 | 8 | 0.9996 | Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Children are very vulnerable to bacterial infections and they are sometimes subject to antimicrobials for healing. The presence of resistance genes may counteract effects of antimicrobials. This work has thereby compared the amount of tetracycline resistance genes, tet(A) and tet(B), between conventional and organic meat-based or vegetable-based baby foods and used the quantification of these genes to assess the presence of tetracycline residues in these samples. Counts of bacteria harboring the tet(A) gene were higher than those containing tet(B), and there was no difference between the organic and the conventional samples. Samples with detectable amounts of tetracycline residues were also positive for the presence of tet genes, and when the presence of the genes was not detected, the samples were also negative for the presence of residues. The percentages of tetracycline residues were higher in organic samples than in conventional ones. It cannot be concluded that organic formulas are safer than conventional ones for the studied parameters. | 2015 | 28231206 |
| 3704 | 9 | 0.9996 | Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms. | 2009 | 18677528 |
| 4575 | 10 | 0.9996 | Antimicrobial Resistance of Acetobacter and Komagataeibacter Species Originating from Vinegars. Consumers' preference towards healthy and novel foods dictates the production of organic unfiltered bottled vinegar that still contains acetic acid bacteria. After ingesting vinegar, the bacteria come into close contact with the human microbiota, creating the possibility of horizontal gene transfer, including genetic determinants for antibiotic resistance. Due to the global spread of antimicrobial resistance (AMR), we analyzed the AMR of Acetobacter and Komagataeibacter species originating mainly from vinegars. Six antibiotics from different structural groups and mechanisms of action were selected for testing. The AMR was assessed with the disk diffusion method using various growth media. Although the number of resistant strains differed among the growth media, 97.4%, 74.4%, 56.4%, and 33.3% of strains were resistant to trimethoprim, erythromycin, ciprofloxacin, and chloramphenicol, respectively, on all three media. Moreover, 17.9% and 53.8% of all strains were resistant to four and three antibiotics of different antimicrobial classes, respectively. We then looked for antimicrobial resistance genes in the genome sequences of the reference strains. The most common genetic determinant potentially involved in AMR encodes an efflux pump. Since these genes pass through the gastrointestinal tract and may be transferred to human microbiota, further experiments are needed to analyze the probability of this scenario in more detail. | 2022 | 35010733 |
| 4579 | 11 | 0.9996 | Selection for amoxicillin-, doxycycline-, and enrofloxacin-resistant Escherichia coli at concentrations lower than the ECOFF in broiler-derived cecal fermentations. Antimicrobial resistance (AMR) is an emerging worldwide problem and a health threat for humans and animals. Antimicrobial usage in human and animal medicine or in agriculture results in selection for AMR. The selective concentration of antimicrobial compounds can be lower than the minimum inhibitory concentration and differs between environments, which can be a reason for bacterial resistance. Therefore, knowledge of the minimal selective concentration (MSC), under natural conditions, is essential to understand the selective window of bacteria when exposed to residual antimicrobials. In this study, we estimated the MSCs of three antimicrobials, amoxicillin, doxycycline, and enrofloxacin in a complex microbial community by conducting fermentation assays with cecal material derived from broilers. We examined the phenotypic resistance of Escherichia coli, resistome, and microbiome after 6 and 30 hours of fermenting in the presence of the antimicrobials of interest. The concentrations were estimated to be 10-100 times lower than the epidemiological cut-off values in E. coli for the respective antimicrobials as determined by EUCAST, resulting in an MSC between 0.08 and 0.8 mg/L for amoxicillin, 0.4 and 4 mg/L for doxycycline, and 0.0125 and 0.125 mg/L for enrofloxacin. Additionally, resistome analysis provided an MSC for doxycycline between 0.4 and 4 mg/L, but amoxicillin and enrofloxacin exposure did not induce a significant difference. Our findings indicate at which concentrations there is still selection for antimicrobial-resistant bacteria. This knowledge can be used to manage the risk of the emergence of antimicrobial-resistant bacteria.IMPORTANCEAntimicrobial resistance possibly affects human and animal health, as well as economic prosperity in the future. The rise of antimicrobial-resistant bacteria is a consequence of using antimicrobial compounds in humans and animals selecting for antimicrobial-resistant bacteria. Concentrations reached during treatment are known to be selective for resistant bacteria. However, at which concentrations residues are still selective is important, especially for antimicrobial compounds that remain in the environment at low concentrations. The data in this paper might inform decisions regarding guidelines and regulations for the use of specific antimicrobials. In this study, we are providing these minimal selective concentrations for amoxicillin, doxycycline, and enrofloxacin in complex environments. | 2024 | 39269186 |
| 4585 | 12 | 0.9996 | Antibiotics florfenicol and flumequine in the water column and sediments of Puyuhuapi Fjord, Chilean Patagonia. Chile is a major global producer of farmed salmon in the fjords of Patagonia, and therefore a major consumer of antibiotics. We tested whether the antibiotics florfenicol and flumequine persisted in the large Puyuhuapi Fjord after the six months following mandatory concerted treatment by all salmon farms present in the fjord. Antibiotics were detected in 26% of analyzed samples, but only within the particulate phase, with concentrations of florfenicol of up to 23.1 ng L(-1), where detected. Flumequine was present in one sample at trace concentration, and neither antibiotic was detected in the dissolved phase nor in surface sediments. A fugacity-based model predicted that flumequine should theoretically remain in surface sediments at the sub-Minimal Inhibiting Concentrations (sub-MIC) previously shown to promote selection for antibiotic resistance in bacteria. Our observations suggest that surface sediments might act as a reservoir for antibiotic resistomes of bacteria, and that bacteria bearing antibiotic resistance genes could eventually become a risk for human health through the consumption of marine products. | 2021 | 33984897 |
| 3395 | 13 | 0.9996 | Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant antibiotics. | 2005 | 15778307 |
| 3701 | 14 | 0.9996 | Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Copper-derived compounds are often used in olive tree farms. In a previous study, a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline. Significant associations were detected between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline resistance mechanisms. A significant association was also detected between zntA (coding for a Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such genetic traits by exposure to metals. | 2020 | 32756388 |
| 3396 | 15 | 0.9996 | Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. The high use of antibiotics for the treatment of bacterial diseases is one of the main problems in the mass production of animal protein. Salmon farming in Chile is a clear example of the above statement, where more than 5,500 tonnes of antibiotics have been used over the last 10 years. This has caused a great impact both at the production level and on the environment; however, there are still few works in relation to it. In order to demonstrate the impact of the high use of antibiotics on fish gut microbiota, we have selected four salmon farms presenting a similar amount of fish of the Atlantic salmon species (Salmo salar), ranging from 4,500 to 6,000 tonnes. All of these farms used treatments with high doses of antibiotics. Thus, 15 healthy fish were selected and euthanised in order to isolate the bacteria resistant to the antibiotics oxytetracycline and florfenicol from the gut microbiota. In total, 47 bacterial isolates resistant to florfenicol and 44 resistant to oxytetracycline were isolated, among which isolates with Minimum Inhibitory Concentrations (MIC) exceeding 2048 μg/mL for florfenicol and 1024 μg/mL for oxytetracycline were found. In addition, another six different antibiotics were tested in order to demonstrate the multiresistance phenomenon. In this regard, six isolates of 91 showed elevated resistance values for the eight tested antibiotics, including florfenicol and oxytetracycline, were found. These bacteria were called "super-resistant" bacteria. This phenotypic resistance was verified at a genotypic level since most isolates showed antibiotic resistance genes (ARGs) to florfenicol and oxytetracycline. Specifically, 77% of antibiotic resistant bacteria showed at least one gene resistant to florfenicol and 89% showed at least one gene resistant to oxytetracycline. In the present study, it was demonstrated that the high use of the antibiotics florfenicol and oxytetracycline has, as a consequence, the selection of multiresistant bacteria in the gut microbiota of farmed fish of the Salmo salar species at the seawater stage. Also, the phenotypic resistance of these bacteria can be correlated with the presence of antibiotic resistance genes. | 2018 | 30204782 |
| 3583 | 16 | 0.9996 | Transfer of a lincomycin-resistant plasmid between coagulase-negative staphylococci during soybean fermentation and mouse intestine passage. Staphylococcus equorum is a benign bacterium and the predominant species in high-salt fermented food. Some strains of S. equorum contain antibiotic-resistance plasmids, such as pSELNU1 that contains a lincosamide nucleotidyltransferase (lnuA) gene and confers resistance to lincomycin. Previously, we showed that pSELNU1 is transferred to other bacteria under laboratory growth conditions. However, it is not known if the plasmid can be transferred to other bacteria during food fermentation (in situ) or during passage through animal intestines (in vivo). In this study, we examined the in situ and in vivo transfer of pSELNU1 using Staphylococcus saprophyticus as a recipient. During soybean fermentation, pSELNU1 was transferred to S. saprophyticus at a rate of 1.9 × 10-5-5.6 × 10-6 per recipient in the presence of lincomycin. However, during passage through murine intestines, the plasmid was transferred at similar rates (1.3 × 10-5 per recipient) in the absence of lincomycin, indicating that the plasmid transfer is much more efficient under in vivo conditions. Based on these results, we conclude that it is prudent to examine food fermentation starter candidates for the presence of mobile genetic elements containing antibiotic resistance genes and to select candidates lacking these genes. | 2019 | 31132119 |
| 3695 | 17 | 0.9996 | Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Shrimp farming is a sufficiently large and mature industry to have an effective range of antimicrobial agents for most bacterial diseases in shrimp culture. However, at present, there exists great concern over the widespread use of antibiotics in aquaculture, which may result in residue of antibiotics in water and mud, and subsequently, the development of antibiotic resistance in bacteria in the environment. There is limited understanding about the effect of antibiotic residues on bacteria resistance in shrimp farming environment. Therefore, a study was conducted to investigate bacterial resistance to Norfloxacin (NFXC), Oxolinic Acid (OXLA), Trimethoprim (TMP) and Sulfamethoxazole (SMX), which were found in four shrimp farming locations in mangrove areas in Vietnam. Findings indicate that there is a relatively high incidence of bacteria resistance to these antibiotics observed in most of the studied sites, particularly to antibiotics with concentration of 0.1 microg/ml. Yet the relation between concentration of antibiotic residues and incidence of antibiotic resistance is not clearly defined. Among individual antibiotics, the incidence of resistance to TMP and SMX was higher than the others. Identification of bacteria isolated from mud samples by DNA analyzer shows that Bacillus and Vibrio are predominant among bacteria resistant to the antibiotics. The result of the study also indicates that these antibiotics in media degraded more rapidly due to the presence of resistant bacteria. | 2005 | 16198672 |
| 4576 | 18 | 0.9996 | Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States. Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages. | 2014 | 24748439 |
| 7101 | 19 | 0.9996 | Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment. To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators - including inorganic ions, antibiotics, and antibiotic resistance genes - were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 microg/L. Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and groundwater samples, four commonly occurring tetracycline (tet) resistance genes - tet(M), tet(O), tet(Q), and tet(W) - were detected. The detection frequency of tet genes was much higher in wells located closer to and down-gradient from the lagoons than in wells more distant from the lagoons. These results suggested that in the groundwater underlying both facilities tetracycline resistance genes exist and are somewhat persistent, but that the distribution and potentially the flux for each tet gene varied throughout the study period. | 2006 | 17127527 |