Genomic signatures of resistance and adaptability in Aeromonas and Pseudomonas from a Brazilian Hope Spot. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
456601.0000Genomic signatures of resistance and adaptability in Aeromonas and Pseudomonas from a Brazilian Hope Spot. The Cagarras Islands Archipelago, a marine protected area in Rio de Janeiro, Brazil, is endowed with a rich and abundant biodiversity. Despite being a "Hope Spot" for marine conservation, it suffers from the impacts of urban pollution, given its proximity to a major metropolis. To date, few studies have delved into the characterization of the bacterial community in the Cagarras Islands, and limited knowledge regarding the pollution effects on a microbiological scale is available. This study presents the first genomic characterization of seven potentially pathogenic strains of Aeromonas and Pseudomonas isolated from water samples collected in four expeditions. Whole genome sequencing was conducted to assess antimicrobial and heavy metal resistance, as well as pathogenicity. Comparative genomic analyses were performed using additional Aeromonas and Pseudomonas genomes from different sources. The identification of multiple genes associated with heavy metal resistance, alongside clinically relevant antimicrobial resistance genes such as mcr-3 (conferring resistance to the last-resort antimicrobial colistin) and bla(OXA) (associated with beta-lactam resistance), showcases the adaptability of these strains and the presence of potentially pathogenic, and antibiotic-resistant bacteria in a protected marine ecosystem. This study highlights the complex genomic landscape of bacteria isolated from a Brazilian Hope Spot, underscoring the importance of integrated microbial monitoring strategies.202540478385
347510.9998Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE: Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health.202439513706
347620.9998Antimicrobial resistance and biotechnological potential of plastic-associated bacteria isolated from an urban estuary. Plastics have quickly become one of the major pollutants in aquatic environments worldwide and solving the plastic pollution crisis is considered a central goal of modern society. In this study, 10 different plastic samples, including high- and low-density polyethylene and polypropylene, were collected from a deeply polluted urban estuary in Brazil. By employing different isolation and analysis approaches to investigate plastic-associated bacteria, a predominance of potentially pathogenic bacteria such as Acinetobacter, Aeromonas, and Vibrio was observed throughout all plastic samples. Bacteria typically found in the aquatic environment harboured clinically relevant genes encoding resistance to carbapenems (bla(KPC) ) and colistin (such as mcr-3 and mcr-4), along with genetic determinants associated with potentially active gene mobilization. Whole genome sequencing and annotation of three plastic-associated Vibrio strains further demonstrated the carriage of mobile genetic elements and antimicrobial resistance and virulence genes. On the other hand, bacteria isolated from the same samples were also able to produce esterases, lipases, and bioemulsifiers, thus highlighting that the plastisphere could also be of special interest from a biotechnological perspective.202337950375
455830.9998Connectiveness of Antimicrobial Resistance Genotype-Genotype and Genotype-Phenotype in the "Intersection" of Skin and Gut Microbes. The perianal skin is a unique "skin-gut" boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche.202540906148
347740.9998Whole-genome sequencing characterization of silver-resistant bacteria from the outfall of wastewater treatment plants and effluent-receiving rivers. The excessive use of silver compounds has led to the environmental dissemination of silver resistance genes. However, little is known about the epidemiology of silver-resistant bacteria in the environment. Wastewater treatment plants (WWTPs) link the clinical settings with the natural environment and serve as a major pathway for silver entering the natural environment. However, their role in the dissemination of silver resistance genes remains unclear. This study investigated the characteristics of silver-resistant bacteria in the vicinity of four WWTPs to assess their environmental impact. Water and sediment samples were collected from the WWTP outfalls and downstream rivers. Among 22 silver-resistant strains obtained through plate screening, the majority were Klebsiella spp., followed by Escherichia spp. and Kluyvera spp. Notably, ST23 and ST2464 were the predominant sequence types (multilocus sequence typing) identified among the Klebsiella pneumoniae isolates. Antimicrobial susceptibility testing and whole-genome sequencing were performed to identify environmental heavy metal and antibiotic-resistant genes. Whole-genome sequencing revealed the presence of the sil and pco operons, which together formed the copper homeostasis and silver resistance island. The silver resistance gene sequences varied. Various heavy metal resistance genes, including mer and ars, were detected in the strains, as were a diverse array of plasmid types, including IncFIB(K) and repB(R1701), and fosA and β-lactamase encoding genes. Taken together, the findings underscore the coexistence of silver resistance genes with multiple heavy metal resistance genes in wastewater bacteria, highlighting the environmental implications of silver usage. Efforts should be directed toward restricting silver usage, improving WWTP purification methods to safeguard human and environmental health. IMPORTANCE: The misuse of silver compounds has led to an increasing presence of silver-resistant microorganisms in the environment, which cannot be completely eliminated in wastewater treatment plants, allowing them to enter the environment and pose risks to environmental safety and human health. However, research on the epidemiology of silver-resistant bacteria in wastewater and their whole-genome sequencing remains limited. Our findings explain that silver-resistant bacteria from the environment often possess resistance to other heavy metals, share genetic similarities, and possess the potential for widespread transmission. Furthermore, these bacteria may enter clinical settings through environmental pathways, posing a risk to human health.202540762474
455750.9998Genomic Analysis of Carbapenem-Resistant Comamonas in Water Matrices: Implications for Public Health and Wastewater Treatments. Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired bla(GES-5), bla(OXA), and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All bla(GES-5)- and bla(OXA)-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to "last-resort drugs," such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase bla(GES-5) or extended-spectrum β-lactamase bla(OXA) alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.202235708324
454660.9997Functional metagenomics reveals wildlife as natural reservoirs of novel β-lactamases. The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel β-lactamase were identified. These putative β-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel β-lactamases, namely bla(SSA), bla(SSB1), bla(SSB2) and bla(SSD), were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel β-lactamases identified in the current study were able to hydrolyze a broad spectrum of β-lactams including cephalosporins, and they were genetically unique comparing with known β-lactamases. The plausible transmission of some novel β-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel β-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.202336626997
499470.9997Diving into the unknown: identification of antimicrobial resistance hotspots in a tropical urban estuary. Antimicrobial resistance is widely studied and well-characterized from a clinical perspective. However, considerably less information is available regarding resistance in environmental settings, especially in aquatic habitats. This study presents data regarding the occurrence, distribution and the antimicrobial susceptibility profile of bacteria isolated from Guanabara Bay (GB), a heavily polluted tropical urban estuary and an important tourist attraction in Rio de Janeiro, Brazil. Water samples from sites characterized by growing degrees of pollution were analysed by culture-dependent methods, revealing the presence of multidrug-resistant bacteria and clinically relevant indicators of antimicrobial resistance, such as extended-spectrum beta-lactamases. Isolates were identified by mass spectrometry, which indicated the presence of potential human pathogens such as Aeromonas spp. and Vibrio spp. Bacteria harbouring beta-lactam resistance genes were also detected. Although GB is widely used as a recreational and fishing area, there is a substantial knowledge gap regarding the monitoring of antimicrobial resistance and the risk that exposure to these waters poses to public health. Thus, this study reveals new information that calls for better comprehension of antimicrobial resistance in aquatic environments, especially those used for recreational purposes.202134146437
455180.9997Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including bla(NDM-5) in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE: Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.202438376265
500190.9997Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.202337439570
5715100.9997Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts.202438391535
4550110.9997Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.202235333870
4991120.9997Genomic and metagenomic analysis reveals shared resistance genes and mobile genetic elements in E. coli and Klebsiella spp. isolated from hospital patients and hospital wastewater at intra- and inter-genus level. Antimicrobial resistance (AMR) is a global problem that gives serious cause for concern. Hospital wastewater (HWW) is an important link between the clinical setting and the natural environment, and an escape route for pathogens that cause hospital infections, including urinary tract infections (UTI). Bacteria of the genera Escherichia and Klebsiella are common etiological factors of UTI, especially in children, and they can cause short-term infections, as well as chronic conditions. ESBL-producing Escherichia and Klebsiella have also emerged as potential indicators for estimating the burden of antimicrobial resistance under environmental conditions and the spread of AMR between clinical settings and the natural environment. In this study, whole-genome sequencing and the nanopore technology were used to analyze the complete genomes of ESBL-producing E.coli and Klebsiella spp. and the HWW metagenome, and to characterize the mechanisms of AMR. The similarities and differences in the encoded mechanisms of AMR in clinical isolates (causing UTI) and environmental strains (isolated from HWW and the HWW metagenome) were analyzed. Special attention was paid to the genetic context and the mobility of antibiotic resistance genes (ARGs) to determine the common sources and potential transmission of these genes. The results of this study suggest that the spread of drug resistance from healthcare facilities via HWW is not limited to the direct transmission of resistant clonal lines that are typically found in the clinical setting, but it also involves the indirect transfer of mobile elements carrying ARGs between bacteria colonizing various environments. Hospital wastewater could offer a supportive environment for plasmid evolution through the insertion of new ARGs, including typical chromosomal regions. These results indicate that interlined environments (hospital patients - HWW) should be closely monitored to evaluate the potential transmission routes of drug resistance in bacteria.202439038407
4961130.9997Draft genome of Serratia sp. R1 gives an insight into the antibiotic resistant genes against multiple antibiotics. BACKGROUND: Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. METHODS: Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. RESULTS: Sequencing resulted in 8.4 Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. CONCLUSION: The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia.202235237932
1972140.9997Draft Genome Sequences of Multidrug-Resistant Escherichia coli Isolated from River Water. The spread of antibiotic resistance poses a critical challenge worldwide. Contaminated environments can become reservoirs, spreading antibiotic-resistant bacteria and genetic determinants of resistance to humans directly or indirectly. Here, we report the draft genome sequence, the resistome, virulence genes, and sequence types of seven multidrug-resistant Escherichia coli strains isolated from river water.202236222705
5002150.9997Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome Sequencing-Based Surveillance. Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.202235695507
5732160.9997New York City House Mice (Mus musculus) as Potential Reservoirs for Pathogenic Bacteria and Antimicrobial Resistance Determinants. House mice (Mus musculus) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella, Salmonella, Clostridium difficile, and diarrheagenic Escherichia coli Furthermore, genes mediating antimicrobial resistance to fluoroquinolones (qnrB) and β-lactam drugs (bla(SHV) and bla(ACT/MIR)) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment.IMPORTANCE Mice are commensal pests often found in close proximity to humans, especially in urban centers. We surveyed mice from seven sites across New York City and found multiple pathogenic bacteria associated with febrile and gastrointestinal disease as well as an array of antimicrobial resistance genes.201829666289
4563170.9997Prophages as a source of antimicrobial resistance genes in the human microbiome. Prophages-viruses that integrate into bacterial genomes-are ubiquitous in the microbial realm. Prophages contribute significantly to horizontal gene transfer, including the potential spread of antimicrobial resistance (AMR) genes, because they can collect host genes. Understanding their role in the human microbiome is essential for fully understanding AMR dynamics and possible clinical implications. We analysed almost 15,000 bacterial genomes for prophages and AMR genes. The bacteria were isolated from diverse human body sites and geographical regions, and their genomes were retrieved from GenBank. AMR genes were detected in 6.6% of bacterial genomes, with a higher prevalence in people with symptomatic diseases. We found a wide variety of AMR genes combating multiple drug classes. We discovered AMR genes previously associated with plasmids, such as blaOXA-23 in Acinetobacter baumannii prophages or genes found in prophages in species they had not been previously described in, such as mefA-msrD in Gardnerella prophages, suggesting prophage-mediated gene transfer of AMR genes. Prophages encoding AMR genes were found at varying frequencies across body sites and geographical regions, with Asia showing the highest diversity of AMR genes.202540166311
4977180.9997In silico analyses of diversity and dissemination of antimicrobial resistance genes and mobile genetics elements, for plasmids of enteric pathogens. INTRODUCTION: The antimicrobial resistance (AMR) mobilome plays a key role in the dissemination of resistance genes encoded by mobile genetics elements (MGEs) including plasmids, transposons (Tns), and insertion sequences (ISs). These MGEs contribute to the dissemination of multidrug resistance (MDR) in enteric bacterial pathogens which have been considered as a global public health risk. METHODS: To further understand the diversity and distribution of AMR genes and MGEs across different plasmid types, we utilized multiple sequence-based computational approaches to evaluate AMR-associated plasmid genetics. A collection of 1,309 complete plasmid sequences from Gammaproteobacterial species, including 100 plasmids from each of the following 14 incompatibility (Inc) types: A/C, BO, FIA, FIB, FIC, FIIA, HI1, HI2, I1, K, M, N, P except W, where only 9 sequences were available, was extracted from the National Center for Biotechnology Information (NCBI) GenBank database using BLAST tools. The extracted FASTA files were analyzed using the AMRFinderPlus web-based tools to detect antimicrobial, disinfectant, biocide, and heavy metal resistance genes and ISFinder to identify IS/Tn MGEs within the plasmid sequences. RESULTS AND DISCUSSION: In silico prediction based on plasmid replicon types showed that the resistance genes were diverse among plasmids, yet multiple genes were widely distributed across the plasmids from enteric bacterial species. These findings provide insights into the diversity of resistance genes and that MGEs mediate potential transmission of these genes across multiple plasmid replicon types. This notion was supported by the observation that many IS/Tn MGEs and resistance genes known to be associated with them were common across multiple different plasmid types. Our results provide critical insights about how the diverse population of resistance genes that are carried by the different plasmid types can allow for the dissemination of AMR across enteric bacteria. The results also highlight the value of computational-based approaches and in silico analyses for the assessment of AMR and MGEs, which are important elements of molecular epidemiology and public health outcomes.202236777021
5006190.9997Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.202236726572