Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
455001.0000Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.202235333870
659710.9999Exploiting a targeted resistome sequencing approach in assessing antimicrobial resistance in retail foods. BACKGROUND: With the escalating risk of antimicrobial resistance (AMR), there are limited analytical options available that can comprehensively assess the burden of AMR carried by clinical/environmental samples. Food can be a potential source of AMR bacteria for humans, but its significance in driving the clinical spread of AMR remains unclear, largely due to the lack of holistic-yet-sensitive tools for surveillance and evaluation. Metagenomics is a culture-independent approach well suited for uncovering genetic determinants of defined microbial traits, such as AMR, present within unknown bacterial communities. Despite its popularity, the conventional approach of non-selectively sequencing a sample's metagenome (namely, shotgun-metagenomics) has several technical drawbacks that lead to uncertainty about its effectiveness for AMR assessment; for instance, the low discovery rate of resistance-associated genes due to their naturally small genomic footprint within the vast metagenome. Here, we describe the development of a targeted resistome sequencing method and demonstrate its application in the characterization of the AMR gene profile of bacteria associated with several retail foods. RESULT: A targeted-metagenomic sequencing workflow using a customized bait-capture system targeting over 4,000 referenced AMR genes and 263 plasmid replicon sequences was validated against both mock and sample-derived bacterial community preparations. Compared to shotgun-metagenomics, the targeted method consistently provided for improved recovery of resistance gene targets with a much-improved target detection efficiency (> 300-fold). Targeted resistome analyses conducted on 36 retail-acquired food samples (fresh sprouts, n = 10; ground meat, n = 26) and their corresponding bacterial enrichment cultures (n = 36) reveals in-depth features regarding the identity and diversity of AMR genes, most of which were otherwise undetected by the whole-metagenome shotgun sequencing method. Furthermore, our findings suggest that foodborne Gammaproteobacteria could be the major reservoir of food-associated AMR genetic determinants, and that the resistome structure of the selected high-risk food commodities are, to a large extent, dictated by microbiome composition. CONCLUSIONS: For metagenomic sequencing-based surveillance of AMR, the target-capture method presented herein represents a more sensitive and efficient approach to evaluate the resistome profile of complex food or environmental samples. This study also further implicates retail foods as carriers of diverse resistance-conferring genes indicating a potential impact on the dissemination of AMR.202336991496
455120.9999Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including bla(NDM-5) in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE: Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.202438376265
659030.9999Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BACKGROUND: Livestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism. METHODS: We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock. RESULTS: We detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households. CONCLUSIONS: Findings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control.202236482440
498940.9999A closer look on the variety and abundance of the faecal resistome of wild boar. Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.202234710519
659350.9999Metagenomic analysis of human, animal, and environmental samples identifies potential emerging pathogens, profiles antibiotic resistance genes, and reveals horizontal gene transfer dynamics. Antimicrobial resistance (AMR) poses a significant threat to global health. The indiscriminate use of antibiotics has accelerated the emergence and spread of drug-resistant bacteria, compromising our ability to treat infectious diseases. A One Health approach is essential to address this urgent issue, recognizing the interconnectedness of human, animal, and environmental health. This study investigated the prevalence and transmission of AMR in a temporary settlement in Kathmandu, Nepal. By employing shotgun metagenomics, we analyzed a diverse range of samples, including human fecal samples, avian fecal samples, and environmental samples. Our analysis revealed a complex interplay of pathogenic bacteria, virulence factors (VF), and antimicrobial resistance genes (ARGs) across these different domains. We identified a diverse range of bacterial species, including potential pathogens, in both human and animal samples. Notably, Prevotella spp. was the dominant gut bacterium in human samples. Additionally, we detected a wide range of phages and viruses, including Stx-2 converting phages, which can contribute to the virulence of Shiga toxin-producing E. coli (STEC) strains. Our analysis revealed the presence of 72 virulence factor genes and 53 ARG subtypes across the studied samples. Poultry samples exhibited the highest number of ARG subtypes, suggesting that the intensive use of antibiotics in poultry production may contribute to the dissemination of AMR. Furthermore, we observed frequent horizontal gene transfer (HGT) events, with gut microbiomes serving as key reservoirs for ARGs. This study underscores the critical role of a One Health approach in addressing AMR. By integrating human, animal, and environmental health perspectives, we can better understand the complex dynamics of AMR and develop effective strategies for prevention and control. Our findings highlight the urgent need for robust surveillance systems, judicious antibiotic use, and improved hygiene practices to mitigate the impact of AMR on public health.202540204742
347560.9999Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE: Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health.202439513706
456070.9999High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria. BACKGROUND: Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bacteria, under the One Health framework. However, evidence of ARGs exchange and potential factors that contribute to this transfer remain limited. RESULTS: Here, by combining culture-based population genomics and genetic comparisons with publicly available datasets, we reconstructed the complete genomes of 82 multidrug-resistant isolates from WWTPs and found that most WWTP-associated isolates were genetically distinct from their closest human/animal-associated relatives currently available in the public database. Even in the minority of lineages that were closely related, WWTP-associated isolates were characterized by quite different plasmid compositions. We identified a high diversity of circular plasmids (264 in total, of which 141 were potentially novel), which served as the main source of resistance, and showed potential horizontal transfer of ARG-bearing plasmids between WWTP- and humans/animal-associated bacteria. Notably, the potentially transferred ARGs and virulence factors (VFs) with different genetic backgrounds were closely associated with flanking insertion sequences (ISs), suggesting the importance of synergy between plasmids and ISs in mediating a multilayered hierarchical transfer of MDR and potentiating the emergence of MDR-hypervirulent clones. CONCLUSION: Our findings advance the current efforts to establish potential epidemiological links of MDR transmission between WWTP- and human/animal-associated bacteria. Plasmids play an important role in mediating the transfer of ARGs and the IS-associated ARGs that are carried by conjugative plasmids should be prioritized to tackle the spread of resistance. Video Abstract.202235078531
454980.9999Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry.202439441515
389390.9999Diverse antibiotic resistance genes in dairy cow manure. Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.201424757214
4563100.9999Prophages as a source of antimicrobial resistance genes in the human microbiome. Prophages-viruses that integrate into bacterial genomes-are ubiquitous in the microbial realm. Prophages contribute significantly to horizontal gene transfer, including the potential spread of antimicrobial resistance (AMR) genes, because they can collect host genes. Understanding their role in the human microbiome is essential for fully understanding AMR dynamics and possible clinical implications. We analysed almost 15,000 bacterial genomes for prophages and AMR genes. The bacteria were isolated from diverse human body sites and geographical regions, and their genomes were retrieved from GenBank. AMR genes were detected in 6.6% of bacterial genomes, with a higher prevalence in people with symptomatic diseases. We found a wide variety of AMR genes combating multiple drug classes. We discovered AMR genes previously associated with plasmids, such as blaOXA-23 in Acinetobacter baumannii prophages or genes found in prophages in species they had not been previously described in, such as mefA-msrD in Gardnerella prophages, suggesting prophage-mediated gene transfer of AMR genes. Prophages encoding AMR genes were found at varying frequencies across body sites and geographical regions, with Asia showing the highest diversity of AMR genes.202540166311
6591110.9999Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. The use of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of AMR between reservoirs demands surveillance in livestock and in humans. We quantified and characterized the acquired resistance gene pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, sequencing more than 5,000 Gb of DNA using shotgun metagenomics. We quantified acquired AMR using the ResFinder database and a second database constructed for this study, consisting of AMR genes identified through screening environmental DNA. The pig and poultry resistomes were very different in abundance and composition. There was a significant country effect on the resistomes, more so in pigs than in poultry. We found higher AMR loads in pigs, whereas poultry resistomes were more diverse. We detected several recently described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between host species and between countries. We found that the total acquired AMR level was associated with the overall country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had similar resistomes. However, functionally determined AMR genes were not associated with total drug use.201830038308
3253120.9999Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species.202336760505
6596130.9999Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. In the present context of growing antimicrobial resistance (AMR) concern, understanding the distribution of AMR determinants in food matrices such as milk is crucial to protect consumers and maintain high food safety standards. Herein, the resistome of different dairy farms was investigated through a shotgun metagenomic sequencing approach, taking advantage of in-line milk filters as promising tools. The application of both the reads-based and the assembly-based approaches has allowed the identification of numerous AMR determinants, enabling a comprehensive resolution of the resistome. Notably most of the species harboring AMR genes were predicted to be Gram-negative genera, namely Enterobacter, Acinetobacter, Escherichia, and Pseudomonas, pointing out the role of these bacteria as reservoirs of AMR determinants. In this context, the use of de novo assembly has allowed a more holistic AMR detection strategy, while the reads-based approach has enabled the detection of AMR genes from low abundance bacteria, usually undetectable by assembly-based methods. The application of both reads-based and assembly-based approaches, despite being computationally demanding, has facilitated the comprehensive characterization of a food chain resistome, while also allowing the construction of complete metagenome assembled genomes and the investigation of mobile genetic elements. Our findings suggest that milk filters can successfully be used to investigate the resistome of bulk tank milk through the application of the shotgun metagenomic sequencing. In accordance with our results, raw milk can be considered a source of AMR bacteria and genes; this points out the importance of properly informing food business operators about the risk associated with poor hygiene practices in the dairy production environment and consumers of the potential microbial food safety risks derived from raw milk products consumption. Translating these findings as risk assessment outputs heralds the next generation of food safety controls.202235840264
4988140.9999Oh, deer! How worried should we be about the diversity and abundance of the faecal resistome of red deer? The emergence of antimicrobial resistance (AMR) is a global threat to public health. Antimicrobials are used in animal production and human medicine, which contribute to the circulation of antibiotic resistance genes (ARGs) in the environment. Wildlife can be reservoirs of pathogens and resistant bacteria. Furthermore, anthropogenic pressure can influence their resistome. This work aimed to study the AMR of the faecal microbiome of red deer, one of the most important game species in Europe. To this end, a high-throughput qPCR approach was employed to screen a high number of ARGs and the antimicrobial susceptibility of indicator bacteria was determined. Several genes that confer resistance to different classes of antibiotics were identified, with the most abundant being tetracycline ARGs. Other genes were also present that are considered current and future threats to human health, and some of these were relatively abundant. Multidrug-resistant E. coli and Enterococcus spp. were isolated, although the overall level of antibiotic resistance was low. These results highlight the pressing need to know the origin and transmission of AMR in wildlife. Thus, and considering the One Health concept, studies such as this one shows the need for surveillance programs to prevent the spread of drug-resistant strains and ARGs.202235151727
4987150.9998The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. One Health field-based approaches are needed to connect the occurrence of antibiotics present in the environment with the presence of antibiotic resistance genes (ARGs) in Gram-negative bacteria that confer resistance to antibiotics important in for both veterinary and human health. Water samples from two Nebraska watersheds influenced by wastewater effluent and agricultural runoff were tested for the presence of antibiotics used in veterinary and human medicine. The water samples were also cultured to identify the bacteria present. Of those bacteria isolated, the Gram-negative rods capable of causing human infections had antimicrobial susceptibility testing and whole-genome sequencing (WGS) performed to identify ARGs present. Of the 211 bacterial isolates identified, 37 belonged to pathogenic genera known to cause human infections. Genes conferring resistance to beta-lactams, aminoglycosides, fosfomycins, and quinolones were the most frequently detected ARGs associated with horizontal gene transfer (HGT) in the watersheds. WGS also suggest recent HGT events involving ARGs transferred between watershed isolates and bacteria of human and animal origins. The results of this study demonstrate the linkage of antibiotics and bacterial ARGs present in the environment with potential human and/or veterinary health impacts. IMPORTANCE One health is a transdisciplinary approach to achieve optimal health for humans, animals, plants and their shared environment, recognizing the interconnected nature of health in these domains. Field based research is needed to connect the occurrence of antibiotics used in veterinary medicine and human health with the presence of antibiotic resistance genes (ARGs). In this study, the presence of antibiotics, bacteria and ARGs was determined in two watersheds in Nebraska, one with agricultural inputs and the other with both agricultural and wastewater inputs. The results presented in this study provide evidence of transfer of highly mobile ARG between environment, clinical, and animal-associated bacteria.202235311538
6595160.9998Methodological aspects of investigating the resistome in pig farm environments. A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, and the environment attracts significant research attention. The animal sector is one of the major contributors to the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions about the epidemiology of AMR in farm environments remain unanswered. This is connected to several methodological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible research on the resistome in complex samples from the indoor farm environment. The work included optimizing sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching against multiple ARG databases is essential for detecting the highest diversity of ARGs.202539954816
4547170.9998Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China. Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using data-mining methods. Most isolates within same hosts possessed the same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Supervised machine learning classifiers revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials, primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs.202438182559
4548180.9998Metatranscriptomic Analysis Reveals Actively Expressed Antimicrobial-Resistant Genes and Their Hosts in Hospital Wastewater. Antimicrobial resistance is a major global concern and economic threat, necessitating a reliable monitoring approach to understand its frequency and spread via the environment. Hospital wastewater serves as a critical reservoir for antimicrobial-resistant organisms; however, its role in resistance gene distribution and dissemination remains poorly understood. This study integrates metagenomic and metatranscriptomic analyses, elucidating the dynamics of antimicrobial resistance in hospital wastewater. Integrated metagenomic and metatranscriptomic sequencing were used to identify actively expressed antimicrobial-resistant genes and antimicrobial-resistant bacteria, offering comprehensive insights into antimicrobial resistance dynamics in hospital wastewater. Liquid chromatography-tandem mass spectrometry analysis revealed the presence of ampicillin, sulbactam, levofloxacin, sulfamethoxazole, and trimethoprim in the sample, which could apply selective pressure on antimicrobial resistance gene expression. While multidrug resistance genes were the most prevalent sequences in both metagenome-assembled genomes and plasmids, plasmid-derived sequences showed a high mRNA/DNA ratio, emphasizing the presence of functionally expressed antimicrobial resistance genes on plasmids rather than on chromosomes. The metagenomic and metatranscriptomic analyses revealed Serratia nevei MAG14 with high mRNA levels of antimicrobial resistance genes; moreover, multidrug-resistant Serratia sp., genetically related to MAG14, was isolated from the wastewater, supporting the phenotypic characterization of crucial antimicrobial-resistant bacteria and validating the genome analysis results. The findings underscore key genes and bacteria as targets for antimicrobial resistance surveillance in hospital wastewater to protect public and environmental health.202439766512
3449190.9998Investigation of mobile genetic elements and their association with antibiotic resistance genes in clinical pathogens worldwide. OBJECTIVES: Antimicrobial-resistant bacteria are a major global health threat. Mobile genetic elements (MGEs) have been crucial for spreading resistance to new bacterial species, including human pathogens. Understanding how MGEs promote resistance could be essential for prevention. Here we present an investigation of MGEs and their association with resistance genes in pathogenic bacteria collected from 59 diagnostic units during 2020, representing a snapshot of clinical infections from 35 counties worldwide. METHODS: We analysed 3,095 whole-genome sequenced clinical bacterial isolates from over 100 species to study the relationship between resistance genes and MGEs. The mobiliome of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae were further examined for geographic differences, as these species were prevalent in all countries. Genes potentially mobilized by MGEs were identified by finding DNA segments containing MGEs and ARGs preserved in multiple species. Network analysis was used to investigate potential MGE interactions, host range, and transmission pathways. RESULTS: The prevalence and diversity of MGEs and resistance genes varied among species, with E. coli and S. aureus carrying more diverse elements. MGE composition differed between bacterial lineages, indicating strong vertical inheritance. 102 MGEs associated with resistance were found in multiple species, and four of these elements seemed to be highly transmissible as they were found in different phyla. We identified 21 genomic regions containing resistance genes potentially mobilized by MGEs, highlighting their importance in transmitting genes to clinically significant bacteria. CONCLUSION: Resistance genes are spread through various MGEs, including plasmids and transposons. Our findings suggest that multiple factors influence MGE prevalence and their transposability, thereby shaping the MGE population and transmission pathways. Some MGEs have a wider host range, which could make them more important for mobilizing genes. We also identified 103 resistance genes potentially mobilised by MGEs, which could increase their transmissibility to unrelated bacteria.202540824964