# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4518 | 0 | 1.0000 | Resistome, Mobilome and Virulome Analysis of Shewanella algae and Vibrio spp. Strains Isolated in Italian Aquaculture Centers. Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest. | 2020 | 32326629 |
| 3475 | 1 | 0.9999 | Phylogenomics of novel clones of Aeromonas veronii recovered from a freshwater lake reveals unique biosynthetic gene clusters. Aquatic ecosystems serve as crucial reservoirs for pathogens and antimicrobial resistance genes, thus presenting a significant global health risk. Here, we investigated the phylogenomics of Aeromonas veronii from Lake Wilcox in Ontario. Among the 11 bacterial isolates, nine were identified as A. veronii. Notably, 67% of A. veronii isolates were potential human pathogens. Considerable genetic diversity was noted among the A. veronii isolates, suggesting the lake as a reservoir for multiple human pathogenic strains. Comparison of the A. veronii sequenced with global A. veronii genomes highlighted significant genetic diversity and suggests widespread dissemination of strains. All the isolates carried chromosomal genes encoding resistance to β-lactams. Although virulence gene content differed between human and non-human pathogenic strains, type III secretion systems was associated with human pathogenic isolates. The assessment of AMR genes in global isolates showed that β-lactam and tetracycline resistance genes were predominant. Although the machine learning-based pangenome-wide association approach performed did not yield any source-based genes, some genes were enriched in a few isolates from different sources. The mrkABCDF operon that mediates biofilm formation and genes encoding resistance to colistin, chloramphenicol, trimethoprim, and tetracycline were enriched in animal products, whereas macrolide resistance genes and Inc plasmid-types were linked to the aquatic environment. Novel biosynthetic gene clusters were identified, suggesting that A. veronii with varying pathogenic potential could produce unique secondary metabolites. There is a need for continuous tracking of pathogens in aquatic ecosystems to contribute to our understanding of their evolutionary dynamics and the ecological roles of their genetic elements. IMPORTANCE: Lakes and other aquatic ecosystems can harbor harmful bacteria that can make people sick and resist antibiotics, posing a significant global health risk. In this study, we investigated Aeromonas veronii, a Gram-negative bacteria found in Lake Wilcox in Ontario. We used various techniques, including whole-genome sequencing (WGS), to analyze the bacteria and found that many of the isolates had the potential to cause human disease. We also discovered significant genetic diversity among the isolates, indicating that the lake may be a reservoir for multiple human pathogenic strains. All isolates carried genes that confer resistance to antibiotics, and some virulence genes were associated with human pathogenic isolates. This study highlights the importance of monitoring aquatic ecosystems for harmful bacteria to better understand their evolution, potential for human pathogenicity, and the ecological roles of their genetic elements. This knowledge can inform strategies for preventing the spread of antibiotic-resistant bacteria and protecting public health. | 2024 | 39513706 |
| 4519 | 2 | 0.9999 | Antimicrobial Drug Resistance in Fish Pathogens. Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in Penaeus monodon larvae caused by Vibrio harveyi resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera Aeromonas, Yersinia, Photobacterium, Edwardsiella, and Vibrio. Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens (Aeromonas spp., Yersinia spp., Photobacterium spp., Edwardsiella spp., and Vibrio spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens (Salmonella enterica serotypes, Escherichia coli, and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments. | 2018 | 29372680 |
| 4968 | 3 | 0.9998 | Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds. | 2023 | 37007466 |
| 4517 | 4 | 0.9998 | Integrative and Conjugative Elements-Positive Vibrio parahaemolyticus Isolated From Aquaculture Shrimp in Jiangsu, China. The development of multidrug- and toxin-resistant bacteria as a result of increasing industrialization and sustained and intense antimicrobial use in aquaculture results in human health problems through increased incidence of food-borne illnesses. Integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that allow bacteria to acquire complex new traits through horizontal gene transfer and encode a wide variety of genetic information, including resistance to antibiotics and heavy metals; however, there is a lack of studies of ICEs of environmental origin in Asia. Here, we determined the prevalence, genotypes, heavy metal resistance and antimicrobial susceptibility of 997 presumptive strains of Vibrio parahaemolyticus (tlh (+), tdh (-)), a Gram-negative bacterium that causes gastrointestinal illness in humans, isolated from four species of aquaculture shrimp in Jiangsu, China. We found that 59 of the 997 isolates (5.9%) were ICE-positive, and of these, 9 isolates tested positive for all resistance genes. BLAST analysis showed that similarity for the eight strains to V. parahaemolyticus was 99%. Tracing the V. parahaemolyticus genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals. We suggest future research to elucidate mechanisms that drive transmission of resistance determinants in V. parahaemolyticus. | 2019 | 31379767 |
| 4966 | 5 | 0.9998 | Whole Genome Analysis of 335 New Bacterial Species from Human Microbiota Reveals a Huge Reservoir of Transferable Antibiotic Resistance Determinants. BACKGROUND: The emergence and diffusion of strains of pathogenic bacteria resistant to antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the human microbiota, which require special monitoring in the fight against antimicrobial resistance. METHODS: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate its whole range of ARGs using the BLAST program against ARGs reference databases. RESULTS: We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution: 264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 β-lactamases, 58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore, evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving mobile genetic elements such as transposase and plasmid. We identified many ARGs that may represent new variants in fosfomycin and β-lactams resistance. CONCLUSION: These findings show that new bacterial species from human microbiota should be considered as an important reservoir of ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential are required to improve our understanding of the functional role of this bacterial community in the development of antibiotic resistance. | 2022 | 35216256 |
| 4609 | 6 | 0.9998 | The importance of integrons for development and propagation of resistance in Shigella: the case of Latin America. In Latin America, the disease burden of shigellosis is found to coexist with the rapid and rampant spread of resistance to commonly used antibiotics. The molecular basis of antibiotic resistance lies within genetic elements such as plasmids, transposons, integrons, genomic islands, etc., which are found in the bacterial genome. Integrons are known to acquire, exchange, and express genes within gene cassettes and it is hypothesized that they play a significant role in the transmission of multidrug resistance genes in several Gram-negative bacteria including Shigella. A few studies have described antibiotic resistance genes and integrons among multidrug resistant Shigella isolates found in Latin America. For example, in Brazil, Bolivia, Chile, Costa Rica and Peru, class 1 and class 2 integrons have been detected among multidrug resistant strains of Shigella; this phenomenon is more frequently observed in S. flexneri isolates that are resistant to trimethoprim, sulfamethoxazole, streptomycin, ampicillin, chloramphenicol, and tetracycline. The gene cassette sul2, which is frequently detected in Shigella strains resistant to the sulfonamides, suggests that the sulfonamide-resistant phenotype can be explained by the presence of the sul2 genes independent of the integron class detected. It is to be noted that sul3 was negative in all isolates analyzed in these studies. The high frequency of sulfonamide (as encoded by sul2) and trimethoprim resistance is likely to be a result of the recurrent use of trimethoprim sulfamethoxazole as a popular regimen for the treatment of shigellosis. The observed resistance profiles of Shigella strains confirm that ampicillin and trimethoprim-sulfamethoxazole are ineffective as therapeutic options. In-depth information regarding antibiotic resistance mechanism in this pathogen is needed in order to develop suitable intervention strategies. There is a pressing need for regional and local antimicrobial resistance profiling of Shigella to be included as a part of the public health strategy. | 2016 | 27528086 |
| 4967 | 7 | 0.9998 | Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected. | 2024 | 39434132 |
| 5718 | 8 | 0.9998 | A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes bla(TEM-1) and bla(CTX-M-15), sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria. | 2024 | 39012117 |
| 3448 | 9 | 0.9998 | Antimicrobial resistance genes and associated mobile genetic elements in Lactobacillales from various sources. Lactobacillales are commonly used in food products and as probiotics in animal and human medicine. Despite being generally recognized as safe, lactic acid bacteria may harbor a variety of antimicrobial resistance genes (ARGs), which may be transferable to human or veterinary pathogens, thus, may pose veterinary and public health concerns. This study investigates the resistome of Lactobacillales. A total of 4,286 whole-genome sequences were retrieved from NCBI RefSeq database. We screened ARGs in whole genome sequences and assessed if they are transmissible by plasmid transfer or by linkage to integrative mobile genetic elements. In the database, 335 strains were found to carry at least one ARG, and 194 strains carried at least one potentially transferable ARG. The most prevalent transferable ARG were tetM and tetW conferring antibiotic resistance to tetracycline. This study highlights the importance of the One Health concept by demonstrating the potential for Lactobacillales, commonly used in food products, to serve as reservoirs and vectors for ARGs. | 2023 | 38045025 |
| 5737 | 10 | 0.9998 | Survey of Colistin Resistance in Commensal Bacteria from Penaeus vannamei Farms in China. Aquatic environments are important reservoirs for drug resistance. Aquatic foods may act as carriers to lead antibiotic-resistant commensal bacteria into the human gastrointestinal system, then contacting gut microbiota and spreading antibiotic resistance. Here, several shrimp farms were investigated to identify colistin resistance among commensal bacteria of aquaculture. A total of 884 (41.6%) colistin-resistant isolates were identified among 2126 strains. Electroporation demonstrated that colistin-resistant fragments were present in some commensal bacteria that could be transferred to other bacteria. Most of the resistant bacteria were Bacillus spp., with 69.3% of the Bacillus species exhibiting multiple drug resistance. Bacillus licheniformis was prevalent, with 58 strains identified that comprised six sequence types (ST) based on multilocus sequence typing. Whole-genome sequencing and comparisons with previous B. licheniformis genomes revealed a high degree of genomic similarity among isolates from different regions. Thus, this species is widely distributed, and this study provides new insights into global antibiotic-resistant characteristics of B. licheniformis. Sequence analyses further revealed some of these strains are even pathogenic and virulent, suggesting the antibiotic resistance and hazards of commensal bacteria in aquaculture should be considered. Considering the "One Health" perspective, improved monitoring of aquatic food is needed to prevent the spread of drug-resistant commensal bacteria from food-associated bacteria to humans. | 2023 | 37297388 |
| 3450 | 11 | 0.9998 | Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids. | 2022 | 36069451 |
| 4965 | 12 | 0.9998 | Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla (OXA-493) and bla (OXA-576) genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla (OXA-493) gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria. | 2020 | 33042043 |
| 4608 | 13 | 0.9998 | Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans. | 2021 | 34827252 |
| 3407 | 14 | 0.9998 | The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family. | 2013 | 23776501 |
| 1972 | 15 | 0.9998 | Draft Genome Sequences of Multidrug-Resistant Escherichia coli Isolated from River Water. The spread of antibiotic resistance poses a critical challenge worldwide. Contaminated environments can become reservoirs, spreading antibiotic-resistant bacteria and genetic determinants of resistance to humans directly or indirectly. Here, we report the draft genome sequence, the resistome, virulence genes, and sequence types of seven multidrug-resistant Escherichia coli strains isolated from river water. | 2022 | 36222705 |
| 4549 | 16 | 0.9998 | Genomic analysis of Salmonella Heidelberg isolated from the Brazilian poultry farms. The rapid expansion of broiler chicken production in Brazil has presented significant sanitation challenges within the poultry industry. Among these challenges, Salmonella enterica subsp. enterica serotype Heidelberg stands as a contributor to global salmonellosis outbreaks. This study analyzed 13 draft genomes of Salmonella Heidelberg isolated from the pre-slaughter broiler chickens farms in Brazil. By conducting in silico analysis of these genomes, the study investigated genome similarity based on single nucleotide polymorphisms (SNPs) and identified genes encoding resistance to antimicrobials, sanitizers, and virulence factors. Furthermore, mobile genetic elements (MGE) were identified to assess their potential role in propagating genes through horizontal gene transfer. A risk classification was also applied based on the resistomes. The genomes revealed a high prevalence of genes conferring resistance to aminoglycosides, fosfomycin, sulfonamides, tetracycline, and genes linked to quaternary ammonium resistance. The study also uncovered six Salmonella pathogenicity islands (SPI) and over 100 genes encoding virulence factors. The association of MGE with antibiotic-resistant genes sul2 and blaCMY-2 raised concerns about the potential transfer to other bacteria, posing a substantial risk for spreading resistance mechanisms according to established risk protocols. Additionally, SNP analysis indicated close phylogenetic relationships among some isolates, suggesting a common origin. This study enhances our understanding of Salmonella Heidelberg strains by identifying key risk factors for transmission and revealing the association between resistance genes and MGEs. This insight provides a foundation for developing and implementing effective control, monitoring, and treatment strategies in the poultry industry. | 2024 | 39441515 |
| 3354 | 17 | 0.9998 | Large-scale metagenomic-based study of antibiotic resistance in the environment. Antibiotic resistance, including multiresistance acquisition and dissemination by pathogens, is a critical healthcare issue threatening our management of infectious diseases [1-3]. Rapid accumulation of resistance phenotypes implies a reservoir of transferable antibiotic resistance gene determinants (ARGDs) selected in response to inhibition of antibiotic concentrations, as found in hospitals [1, 3-5]. Antibiotic resistance genes were found in environmental isolates, soil DNA [4-6], secluded caves [6, 7], and permafrost DNA [7, 8]. Antibiotics target essential and ubiquitous cell functions, and resistance is a common characteristic of environmental bacteria [8-11]. Environmental ARGDs are an abundant reservoir of potentially transferable resistance for pathogens [9-12]. Using metagenomic sequences, we show that ARGDs can be detected in all (n=71) environments analyzed. Soil metagenomes had the most diverse pool of ARGDs. The most common types of resistances found in environmental metagenomes were efflux pumps and genes conferring resistance to vancomycin, tetracycline, or β-lactam antibiotics used in veterinary and human healthcare. Our study describes the diverse and abundant antibiotic resistance genes in nonclinical environments and shows that these genes are not randomly distributed among different environments (e.g., soil, oceans or human feces). | 2014 | 24814145 |
| 3406 | 18 | 0.9998 | Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms. Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria-the potentially environmental and the potentially pathogenic-were isolated from both the wastewater influent and discharged effluent of a full-scale wastewater treatment plant and characterized by whole genome sequencing and antibiotic susceptibility testing. Among the potentially environmental isolates, there was no detection of any acquired antibiotic resistance genes, which supports the idea that their resistance mechanisms are mainly intrinsic. On the contrary, the potentially pathogenic isolates presented a broad diversity of acquired antibiotic resistance genes towards different antibiotic classes, especially β-lactams, aminoglycosides, and fluoroquinolones. All these bacteria showed multiple β-lactamase-encoding genes, some with carbapenemase activity, such as the bla(KPC)-type genes found in the Enterobacteriaceae isolates. The antibiotic susceptibility testing assays performed on these isolates also revealed that all had a multi-resistance phenotype, which indicates that the acquired resistance is their major antibiotic resistance mechanism. In conclusion, the two bacterial groups have distinct resistance mechanisms, which suggest that the antibiotic resistance in the environment can be a more complex problematic than that generally assumed. | 2021 | 34572700 |
| 4545 | 19 | 0.9998 | Beta-lactamases in lactic acid bacteria: Dual role in antimicrobial resistance spread and environmental detoxification of antibiotic residues. Lactic acid bacteria (LAB) are widely used in food production and as probiotics. However, their potential role in the spreading of antimicrobial resistance (AMR) remains underexplored. A major AMR mechanism is the production of beta-lactamases, which is well-documented in most pathogenic bacteria; the diversity and functionality of these enzymes in LAB are less understood. Here, we explored the genomic diversity of beta-lactamase genes in LAB in a broad range of publicly available LAB genomes. Our findings revealed the presence of two distinct types of beta-lactamase genes in LAB: ampC-type beta-lactamases (class C), likely developed within LAB lineages, and bla(TEM)-type (class A), potentially acquired via HGT. Phylogenetic and structural analysis revealed similarities between LAB-derived ampC genes and clinically relevant class C beta-lactamases, while bla(TEM)-type genes were identified to be often flanked by mobility-related genetic elements, indicating a potential for horizontal gene transfer (HGT). Molecular docking studies further showed that LAB beta-lactamases may hydrolyze a broad spectrum of beta-lactam antibiotics, particularly aminopenicillins and cephalosporins. These findings will contribute to the broader field of AMR research, highlighting the importance of monitoring beta-lactamase production by LAB and its implications for food safety, bioremediation of beta-lactam antibiotic residues in wastewater and agro-industrial effluents. | 2025 | 40651383 |