Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
451001.0000Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. Most anthropogenically affected environments contain mixtures of pollutants from different sources. The impact of these pollutants is usually the combined effect of the individual polluting constituents. However, how these stressors contribute to the development of antimicrobial resistance in environmental microorganisms is poorly understood. Thus, a 30-day exposure experiment to environmental and sub-inhibitory concentrations of oxytetracycline, amoxicillin, zinc, copper, BAC (benzalkonium chloride) 10 and DADMAC (diallyldimethylammonium chloride) 12, was conducted using fully susceptible E. coli ATCC 25922 to ascertain any development of phenotypic or genotypic resistance. Furthermore, wild-type isolates were collected from the same aquatic environment as the stressors, analysed for phenotypic resistance using the disk diffusion method and genotypically through whole genome sequencing. Exposure to the various concentrations and combinations of the stressors did not trigger phenotypic resistance in the experimental bacteria. Furthermore, genotypic analysis of the WGS on the exposed isolates only found the macrolide resistance mdf(A) gene (also present in the control strain) and the disinfectant resistance gene sitABCD. With further analysis for single nucleotide variants (SNV), mutations were detected for 19 genes that encoded for oxidative stress, DNA repair, membrane proteins efflux systems, growth and persister formations except for the robA, a transcription protein subset of the ArcC/XylS family of proteins, which confer multidrug resistance in E. coli. This indicates that exposure to sub-inhibitory concentrations of antibiotics, heavy metals and biocide residues in the aquatic environmental concentrations of the stressors identified in the current study could not induce phenotypic or genotypic resistance but encoded for genes responsible for the development of persistence and tolerance in bacteria, which could be a precursor to the development of resistance in environmental bacteria.202337482346
576210.9999Evolution of antimicrobial resistance in E. coli biofilm treated with high doses of ciprofloxacin. The evolution of antimicrobial resistance (AMR) has mainly been studied in planktonic bacteria exposed to sub-inhibitory antimicrobial (AM) concentrations. However, in a number of infections that are treated with AMs the bacteria are located in biofilms where they tolerate high doses of AM. In the present study, we continuously exposed biofilm residing E. coli at body temperature to high ciprofloxacin (CIP) concentrations increasing from 4 to 130 times the minimal inhibitory concentration (MIC), i.e., from 0.06 to 2.0 mg/L. After 1 week, the biofilms were full of CIP resistant bacteria. The evolutionary trajectory observed was the same as described in the literature for planktonic bacteria, i.e., starting with a single mutation in the target gene gyrA followed by mutations in parC, gyrB, and parE, as well as in genes for regulation of multidrug efflux pump systems and outer membrane porins. Strains with higher numbers of these mutations also displayed higher MIC values. Furthermore, the evolution of CIP resistance was more rapid, and resulted in strains with higher MIC values, when the bacteria were biofilm residing than when they were in a planktonic suspension. These results may indicate that extensive clinical AM treatment of biofilm-residing bacteria may not only fail to eradicate the infection but also pose an increased risk of AMR development.202337731931
450920.9998Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis. The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed. Further, the excessive use of this biocide in natural environments may selectively enrich for not only TCS-resistant bacterial pathogens, but possibly for additional resistance to multiple antibiotics.201829420585
457330.9998High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes.202235953184
382040.9998Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.201425293762
379350.9998Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied.201830254617
465160.9998Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Several mechanisms are responsible for the ability of microorganisms to tolerate antibiotics, and the incidence of resistance to these compounds within bacterial species has increased since the commercial use of antibiotics became widespread. To establish the extent of and changes in the diversity of antibiotic resistance patterns in natural populations, we determined the MICs of five antibiotics for collections of enteric bacteria isolated from diverse hosts and geographic locations and during periods before and after commercial application of antibiotics began. All of the pre-antibiotic era strains were susceptible to high levels of these antibiotics, whereas 20% of strains from contemporary populations of Escherichia coli and Salmonella enterica displayed high-level resistance to at least one of the antibiotics. In addition to the increase in the frequency of high-level resistance, background levels, conferred by genes providing nonspecific low-level resistance to multiple antibiotics, were significantly higher among contemporary strains. Changes in the incidence and levels of antibiotic resistance are not confined to particular segments of the bacterial population and reflect responses to the increased exposure of bacteria to antimicrobial compounds over the past several decades.200011097921
457170.9998Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood.201424956077
380780.9998Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.200616391076
457290.9998Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.202336462825
3800100.9998Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. Microbial horizontal gene transfer is a continuous process that shapes bacterial genomic adaptation to the environment and the composition of concurrent microbial ecology. This includes the potential impact of synthetic antibiotic utilization in farm animal production on overall antibiotic resistance issues; however, the mechanisms behind the evolution of microbial communities are not fully understood. We explored potential mechanisms by experimentally examining the relatedness of phylogenetic inference between multidrug-resistant Salmonella enterica serovar Typhimurium isolates and pathogenic Salmonella Typhimurium strains based on genome-wide single-nucleotide polymorphism (SNP) comparisons. Antibiotic-resistant S Typhimurium isolates in a simulated farm environment barely lost their resistance, whereas sensitive S Typhimurium isolates in soils gradually acquired higher tetracycline resistance under antibiotic pressure and manipulated differential expression of antibiotic-resistant genes. The expeditious development of antibiotic resistance and the ensuing genetic alterations in antimicrobial resistance genes in S Typhimurium warrant effective actions to control the dissemination of Salmonella antibiotic resistance.IMPORTANCE Antibiotic resistance is attributed to the misuse or overuse of antibiotics in agriculture, and antibiotic resistance genes can also be transferred to bacteria under environmental stress. In this study, we report a unidirectional alteration in antibiotic resistance from susceptibility to increased resistance. Highly sensitive Salmonella enterica serovar Typhimurium isolates from organic farm systems quickly acquired tetracycline resistance under antibiotic pressure in simulated farm soil environments within 2 weeks, with expression of antibiotic resistance-related genes that was significantly upregulated. Conversely, originally resistant S Typhimurium isolates from conventional farm systems lost little of their resistance when transferred to environments without antibiotic pressure. Additionally, multidrug-resistant S Typhimurium isolates genetically shared relevancy with pathogenic S Typhimurium isolates, whereas susceptible isolates clustered with nonpathogenic strains. These results provide detailed discussion and explanation about the genetic alterations and simultaneous acquisition of antibiotic resistance in S Typhimurium in agricultural environments.201830054356
3803110.9998Modeling Antibiotic Concentrations in the Vicinity of Antibiotic-Producing Bacteria at the Micron Scale. It is generally thought that antibiotics confer upon the producing bacteria the ability to inhibit or kill neighboring microorganisms, thereby providing the producer with a significant competitive advantage. Were this to be the case, the concentrations of emitted antibiotics in the vicinity of producing bacteria might be expected to fall within the ranges of MICs that are documented for a number of bacteria. Furthermore, antibiotic concentrations that bacteria are punctually or chronically exposed to in environments harboring antibiotic-producing bacteria might fall within the range of minimum selective concentrations (MSCs) that confer a fitness advantage to bacteria carrying acquired antibiotic resistance genes. There are, to our knowledge, no available in situ measured antibiotic concentrations in the biofilm environments that bacteria typically live in. The objective of the present study was to use a modeling approach to estimate the antibiotic concentrations that might accumulate in the vicinity of bacteria that are producing an antibiotic. Fick's law was used to model antibiotic diffusion using a series of key assumptions. The concentrations of antibiotics within a few microns of single producing cells could not reach MSC (8 to 16 μg/L) or MIC (500 μg/L) values, whereas the concentrations around aggregates of a thousand cells could reach these concentrations. The model outputs suggest that single cells could not produce an antibiotic at a rate sufficient to achieve a bioactive concentration in the vicinity, whereas a group of cells, each producing the antibiotic, could do so. IMPORTANCE It is generally assumed that a natural function of antibiotics is to provide their producers with a competitive advantage. If this were the case, sensitive organisms in proximity to producers would be exposed to inhibitory concentrations. The widespread detection of antibiotic resistance genes in pristine environments suggests that bacteria are indeed exposed to inhibitory antibiotic concentrations in the natural world. Here, a model using Fick's law was used to estimate potential antibiotic concentrations in the space surrounding producing cells at the micron scale. Key assumptions were that per-cell production rates drawn from the pharmaceutical manufacturing industry are applicable in situ, that production rates were constant, and that produced antibiotics are stable. The model outputs indicate that antibiotic concentrations in proximity to aggregates of a thousand cells can indeed be in the minimum inhibitory or minimum selective concentration range.202336975795
9922120.9998De novo acquisition of antibiotic resistance in six species of bacteria. Bacteria can become resistant to antibiotics in two ways: by acquiring resistance genes through horizontal gene transfer and by de novo development of resistance upon exposure to non-lethal concentrations. The importance of the second process, de novo build-up, has not been investigated systematically over a range of species and may be underestimated as a result. To investigate the DNA mutation patterns accompanying the de novo antibiotic resistance acquisition process, six bacterial species encountered in the food chain were exposed to step-wise increasing sublethal concentrations of six antibiotics to develop high levels of resistance. Phenotypic and mutational landscapes were constructed based on whole-genome sequencing at two time points of the evolutionary trajectory. In this study, we found that (1) all of the six strains can develop high levels of resistance against most antibiotics; (2) increased resistance is accompanied by different mutations for each bacterium-antibiotic combination; (3) the number of mutations varies widely, with Y. enterocolitica having by far the most; (4) in the case of fluoroquinolone resistance, a mutational pattern of gyrA combined with parC is conserved in five of six species; and (5) mutations in genes coding for efflux pumps are widely encountered in gram-negative species. The overall conclusion is that very similar phenotypic outcomes are instigated by very different genetic changes. The outcome of this study may assist policymakers when formulating practical strategies to prevent development of antimicrobial resistance in human and veterinary health care.IMPORTANCEMost studies on de novo development of antimicrobial resistance have been performed on Escherichia coli. To examine whether the conclusions of this research can be applied to more bacterial species, six species of veterinary importance were made resistant to six antibiotics, each of a different class. The rapid build-up of resistance observed in all six species upon exposure to non-lethal concentrations of antimicrobials indicates a similar ability to adjust to the presence of antibiotics. The large differences in the number of DNA mutations accompanying de novo resistance suggest that the mechanisms and pathways involved may differ. Hence, very similar phenotypes can be the result of various genotypes. The implications of the outcome are to be considered by policymakers in the area of veterinary and human healthcare.202539907470
9921130.9998Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in Escherichia coli. Resistance to third-generation cephalosporins among Gram-negative bacteria is a rapidly growing public health threat. Among the most commonly used third-generation cephalosporins is ceftriaxone. Bacterial exposure to sublethal or sub-MIC antibiotic concentrations occurs widely, from environmental residues to intermittently at the site of infection. Quality of ceftriaxone is also a concern, especially in low- and middle-income countries, with medicines having inappropriate active pharmaceutical ingredient (API) content or concentration. While focus has been largely on extended-spectrum β-lactamases and high-level resistance, there are limited data on specific chromosomal mutations and other pathways that contribute to ceftriaxone resistance under these conditions. In this work, Escherichia coli cells were exposed to a broad range of sub-MICs of ceftriaxone and mutants were analyzed using whole-genome sequencing. Low-level ceftriaxone resistance emerged after as low as 10% MIC exposure, with the frequency of resistance development increasing with concentration. Genomic analyses of mutants revealed multiple genetic bases. Mutations were enriched in genes associated with porins (envZ, ompF, ompC, and ompR), efflux regulation (marR), and the outer membrane and metabolism (galU and pgm), but none were associated with the ampC β-lactamase. We also observed selection of mgrB mutations. Notably, pleiotropic effects on motility and cell surface were selected for in multiple independent genes, which may have important consequences. Swift low-level resistance development after exposure to low ceftriaxone concentrations may result in reservoirs of bacteria with relevant mutations for survival and increased resistance. Thus, initiatives for broader surveillance of low-level antibiotic resistance and genomic resistance determinants should be pursued when resources are available. IMPORTANCE Ceftriaxone is a widely consumed antibiotic used to treat bacterial infections. Bacteria, however, are increasingly becoming resistant to ceftriaxone. Most work has focused on known mechanisms associated with high-level ceftriaxone resistance. However, bacteria are extensively exposed to low antibiotic concentrations, and there are limited data on the evolution of ceftriaxone resistance under these conditions. In this work, we observed that bacteria quickly developed low-level resistance due to both novel and previously described mutations in multiple different genes upon exposure to low ceftriaxone concentrations. Additionally, exposure also led to changes in motility and the cell surface, which can impact other processes associated with resistance and infection. Notably, low-level-resistant bacteria would be missed in the clinic, which uses set breakpoints. While they may require increased resources, this work supports continued initiatives for broader surveillance of low-level antibiotic resistance or their resistance determinants, which can serve as predictors of higher risk for clinical resistance.202134787446
4720140.9998Augmentation of antibiotic resistance in Salmonella typhimurium DT104 following exposure to penicillin derivatives. Antibiotic resistance in pathogenic bacteria has been a problem in both developed and developing countries. This problem is especially evident in Salmonella typhimurium, one of the most prevalent foodborne pathogens. While performing in vitro gentamicin protection-based invasion assays, we found that certain isolates of multiresistant S. typhimurium can be 'induced' to exhibit new resistance profiles. That is, bacteria become resistant to a wider range of antibiotics and they also exhibit quantitative increases in MIC values for antibiotics that were part of their pre-induction antibiograms. This 'induction' process involves growing the bacteria to stationary phase in the presence of antibiotics such as ampicillin, amoxicillin or ticarcillin. Since the isolates studied exhibited resistance to ampicillin, amoxicillin and ticarcillin prior to exposing the bacteria to these antibiotics, the observed phenomenon suggests that resistant Salmonella not only have a selective advantage over non-resistant Salmonella but their resistance phenotypes can be accentuated when an inappropriate antibiotic is used therapeutically.200010731615
3599150.9998Distribution of the pco Gene Cluster and Associated Genetic Determinants among Swine Escherichia coli from a Controlled Feeding Trial. Copper is used as an alternative to antibiotics for growth promotion and disease prevention. However, bacteria developed tolerance mechanisms for elevated copper concentrations, including those encoded by the pco operon in Gram-negative bacteria. Using cohorts of weaned piglets, this study showed that the supplementation of feed with copper concentrations as used in the field did not result in a significant short-term increase in the proportion of pco-positive fecal Escherichia coli. The pco and sil (silver resistance) operons were found concurrently in all screened isolates, and whole-genome sequencing showed that they were distributed among a diversity of unrelated E. coli strains. The presence of pco/sil in E. coli was not associated with elevated copper minimal inhibitory concentrations (MICs) under a variety of conditions. As found in previous studies, the pco/sil operons were part of a Tn7-like structure found both on the chromosome or on plasmids in the E. coli strains investigated. Transfer of a pco/sil IncHI2 plasmid from E. coli to Salmonella enterica resulted in elevated copper MICs in the latter. Escherichia coli may represent a reservoir of pco/sil genes transferable to other organisms such as S. enterica, for which it may represent an advantage in the presence of copper. This, in turn, has the potential for co-selection of resistance to antibiotics.201830340352
4724160.9997Transcriptomic analysis of sub-MIC Eugenol exposition on antibiotic resistance profile in Multidrug Resistant Enterococcus faecalis E9.8. The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci. Eugenol treatment irreversibly reduced several antibiotics' minimum inhibitory concentration (MIC), confirmed by kinetic studies for kanamycin, erythromycin, and tetracycline. Furthermore, transcriptomic analysis indicated the reversion of antibiotic resistance through direct and indirect measures, such as down-regulation of genes coding for proteins involved in antibiotic resistance, toxin resistance and virulence factors. Regarding antibiotic resistance genes (ARGs), ten differentially expressed genes (five down-regulated and five up-regulated genes) were related to the main transporter families, which present key targets in antibiotic resistance reversion. Our study thus highlights the importance of considering indirectly related genes as targets for antibiotic resistance reversion besides ARGs sensu stricto. These results allow us to propose using eugenol as an antibiotic resistance reversing agent to be included in disinfectant solutions as an excellent alternative to limit the spread of MDR bacteria and their ARGs in the food chain and the environment.202539827501
4404170.9997Adaptation to Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association with Tolerance to Other Antimicrobials and Physical Stresses. Chlorhexidine (CH) and quaternary ammonium compounds (QAC), such as cetrimide (CE), are widely used as disinfectants because of their broad antimicrobial spectrum. However, their frequent use for disinfection in different settings may promote bacterial drug resistance against both biocides and clinically relevant antibiotics. This study analyzes the effects of stepwise exposure to cetrimide (CE) and chlorhexidine (CH) of bacteria from organic foods and previously classified as biocide-sensitive. Gradual exposure of these strains to biocides resulted in mainly transient decreased antimicrobial susceptibility to other antibiotics and to biocides. Biocide-adapted bacteria also exhibit alterations in physiological characteristics, mainly decreased heat tolerance, or gastric acid tolerance in CE-adapted strains, while bile resistance does not seem to be influenced by biocide adaptation. Results from this study suggest that changes in membrane fluidity may be the main mechanism responsible for the acquisition of stable tolerance to biocides.201728177232
4728180.9997Antibiotic Resistance Profile, Outer Membrane Proteins, Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are Potential Pathogens Compared to Environmental Isolates. Outer membrane proteins (OMPs) of gram-negative bacteria play an important role in mediating antibacterial resistance, bacterial virulence and thus affect pathogenic ability of the bacteria. Over the years, prevalence of environmental antibiotic resistant organisms, their transmission to clinics and ability to transfer resistance genes, have been studied extensively. Nevertheless, how successful environmental bacteria can be in establishing as pathogenic bacteria under clinical setting, is less addressed. In the present study, we utilized an integrated approach of investigating the antibiotic resistance profile, presence of outer membrane proteins and virulence factors to understand extent of threat posed due to multidrug resistant environmental Enterobacter isolates. Also, we investigated clinical Enterobacter isolates and compared the results thereof. Results of the study showed that multidrug resistant environmental Enterobacter isolates lacked OmpC, lacked cell invasion abilities and exhibited low reactive oxygen species (ROS) production in neutrophils. In contrast, clinical isolates possessed OmpF, exhibited high invasive and adhesive property and produced higher amounts of ROS in neutrophils. These attributes indicated limited pathogenic potential of environmental Enterobacter isolates. Informations obtained from whole genome sequence of two representative bacterial isolates from environment (DL4.3) and clinical sources (EspIMS6) corroborated well with the observed results. Findings of the present study are significant as it highlights limited fitness of multidrug resistant environmental Enterobacter isolates.202032154188
4569190.9997Effect of oxygen on antimicrobial resistance genes from a one health perspective. Bacteria must face and adapt to a variety of physicochemical conditions in the environment and during infection. A key condition is the concentration of dissolved oxygen, proportional to the partial pressure of oxygen (PO(2)), which is extremely variable among environmental biogeographical areas and also compartments of the human and animal body. Here, we sought to understand if the phenotype of resistance determinants commonly found in Enterobacterales can be influenced by oxygen pressure. To do so, we have compared the MIC in aerobic and anaerobic conditions of isogenic Escherichia coli strains containing 136 different resistance genes against 8 antibiotic families. Our results show a complex landscape of changes in the performance of resistance genes in anaerobiosis. Certain changes are especially relevant for their intensity and the importance of the antibiotic family, like the large decreases in resistance observed against ertapenem and fosfomycin among bla(VIM) β-lactamases and certain fos genes, respectively; however, the bla(OXA-48) β-lactamase from the clinically relevant pOXA-48 plasmid conferred 4-fold higher ertapenem resistance in anaerobiosis. Strong changes in resistance patterns in anaerobiosis were also conserved in Klebsiella pneumoniae. Our results suggest that anaerobiosis is a relevant aspect that can affect the action and selective power of antibiotics for specific AMRs in different environments.202540286623