# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4500 | 0 | 1.0000 | Mosaic tetracycline resistance genes encoding ribosomal protection proteins. First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria. | 2016 | 27494928 |
| 4501 | 1 | 0.9999 | A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group. | 1992 | 1339256 |
| 4496 | 2 | 0.9998 | Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. BACKGROUND: Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. OBJECTIVES: We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. METHODS: We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. RESULTS: The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. CONCLUSIONS: With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli. | 2021 | 33655294 |
| 4526 | 3 | 0.9998 | The tetracycline resistance gene tet(M) exhibits mosaic structure. Tetracycline resistance genes of the M class, tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight different tet(M) genes (from Enterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum, and Neisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of the tet(M) locus. Unlike described cases of chromosomally located mosaic loci, tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure within tet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located. | 1996 | 8812782 |
| 4497 | 4 | 0.9998 | Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm. | 2019 | 31448060 |
| 4465 | 5 | 0.9998 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 4499 | 6 | 0.9998 | Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material. | 1987 | 3032095 |
| 4498 | 7 | 0.9998 | A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated. | 2008 | 18024520 |
| 4471 | 8 | 0.9998 | Update on acquired tetracycline resistance genes. This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed. | 2005 | 15837373 |
| 3600 | 9 | 0.9998 | Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method. | 2004 | 15305923 |
| 4660 | 10 | 0.9997 | Recovery of new integron classes from environmental DNA. Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed. | 2001 | 11166996 |
| 4467 | 11 | 0.9997 | PCR mapping of integrons reveals several novel combinations of resistance genes. The integron is a new type of mobile element which has evolved by a site-specific recombinational mechanism. Integrons consist of two conserved segments of DNA separated by a variable region containing one or more genes integrated as cassettes. Oligonucleotide probes specific for the conserved segments have revealed that integrons are widespread in recently isolated clinical bacteria. Also, by using oligonucleotide probes for several antibiotic resistance genes, we have found novel combinations of resistance genes in these strains. By using PCR, we have determined the content and order of the resistance genes inserted between the conserved segments in the integrons of these clinical isolates. PCR mapping of integrons can be a useful epidemiological tool to study the evolution of multiresistance plasmids and transposons and dissemination of antibiotic resistance genes. | 1995 | 7695304 |
| 4524 | 12 | 0.9997 | Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter. | 2016 | 27154456 |
| 3579 | 13 | 0.9997 | The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp. lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open reading frame encoding a hypothetical protein, which exhibited a similar GC content (51-53%). These genes were positioned in the same genomic context within the examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in a clade separate from tet(W) of other species and genera. This is not the case for tet(W) encoded by other bifidobacteria and other species where tet(W) is often found in association with transferable elements or in different genomic regions. An IS5-like element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found in a human gut related bacterium, but it was not associated with any tet(W) genes. This suggests that the IS5-like element is not associated with genetic mobility. tet(W) and the IS5 element have previously been shown to be co-transcribed, indicating that co-localization may be associated with tet(W) expression. Here, we present a method where phylogenetic and in silico genome analysis can be used to determine whether antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby possess a negligible risk of transfer. | 2021 | 34335493 |
| 4505 | 14 | 0.9997 | Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. Resistance to macrolide, lincosamide and streptogramin antibiotics is due to alteration of the target site or detoxification of the antibiotic. Postranscriptional methylation of 23S ribosomal rRNA confers resistance to macrolide (M), lincosamide (L) and streptogramin (S) B-type antibiotics, the so-called MLSB phenotype. Several classes of rRNA methylases conferring resistance to MLSB antibiotics have been characterized in Gram-positive cocci, in Bacillus spp, and in strains of actinomycetes producing erythromycin. The enzymes catalyze N6-dimethylation of an adenine residue situated in a highly conserved region of prokaryotic 23S rRNA. In this review, we compare the amino acid sequences of the rRNA methylases and analyze the codon usage in the corresponding erm (erythromycin resistance methylase) genes. The homology detected at the protein level is consistent with the notion that an ancestor of the erm genes was implicated in erythromycin resistance in a producing strain. However, the rRNA methylases of producers and non-producers present substantial sequence diversity. In Gram-positive bacteria the preferential codon usage in the erm genes reflects the guanosine plus cytosine content of the chromosome of the host. These observations suggest that the presence of erm genes in these micro-organisms is ancient. By contrast, it would appear that enterobacteria have acquired only recently an rRNA methylase gene of the ermB class from a Gram-positive coccus since the genes isolated in Escherichia coli and in Gram-positive cocci are highly homologous (homology greater than 98%) and present a codon usage typical of the latter micro-organisms. As opposed to the MLSB phenotype which results from a single biochemical mechanism, inactivation of structurally related antibiotics of the MLS group involves synthesis of various other enzymes. In enterobacteria, resistance to erythromycin and oleandomycin is due to production of erythromycin esterases which hydrolyze the lactone ring of the 14-membered macrolides. We recently reported the nucleotide sequence of ereA and ereB (erythromycin resistance esterase) genes which encode erythromycin esterases type I and II, respectively. The amino acid sequences of the two isozymes do not exhibit statistically significant homology. Analysis of codon usage in both genes suggests that esterase type I is indigenous to E. coli, whereas the type II enzyme was acquired by E. coli from a phylogenetically remote micro-organism. Inactivation of lincosamides, first reported in staphylococci and lactobacilli of animal origin, was also recently detected in Gram-positive cocci isolated from humans.(ABSTRACT TRUNCATED AT 400 WORDS) | 1987 | 3326871 |
| 486 | 15 | 0.9997 | Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Resistance to a range of heavy metal ions was determined for lead-resistant and other bacteria which had been isolated from a battery-manufacturing site contaminated with high concentration of lead. Several Gram-positive (belonging to the genera Arthrobacter and Corynebacterium) and Gram-negative (Alcaligenes species) isolates were resistant to lead, mercury, cadmium, cobalt, zinc and copper, although the levels of resistance to the different metal ions were specific for each isolate. Polymerase chain reaction, DNA-DNA hybridization and DNA sequencing were used to explore the nature of genetic systems responsible for the metal resistance in eight of the isolates. Specific DNA sequences could be amplified from the genomic DNA of all the isolates using primers for sections of the mer (mercury resistance determinant on the transposon Tn501) and pco (copper resistance determinant on the plasmid pRJ1004) genetic systems. Positive hybridizations with mer and pco probes indicated that the amplified segments were highly homologous to these genes. Some of the PCR products were cloned and partially sequenced, and the regions sequenced were highly homologous to the appropriate regions of the mer and pco determinants. These results demonstrate the wide distribution of mercury and copper resistance genes in both Gram-positive and Gram-negative isolates obtained from this lead-contaminated soil. In contrast, the czc (cobalt, zinc and cadmium resistance) and chr (chromate resistance) genes could not be amplified from DNAs of some isolates, indicating the limited contribution, if any, of these genetic systems to the metal ion resistance of these isolates. | 1997 | 9342884 |
| 4420 | 16 | 0.9997 | New perspectives in tetracycline resistance. Until recently, tetracycline efflux was thought to be the only mechanism of tetracycline resistance. As studies of tetracycline resistance have shifted to bacteria outside the Enterobacteriaceae, two other mechanisms of resistance have been discovered. The first is ribosomal protection, a type of resistance which is found in mycoplasmas, Gram-positive and Gram-negative bacteria and may be the most common type of tetracycline resistance in nature. The second is tetracycline modification, which has been found only in two strains of an obligate anaerobe (Bacteroides). Recent studies have also turned up such anomalies as a tetracycline efflux pump which does not confer resistance to tetracycline and a gene near the replication origin of a tetracycline-sensitive Bacillus strain which confers resistance when it is amplified. | 1990 | 2181236 |
| 4466 | 17 | 0.9997 | Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Resistance of gram-negative organisms to antibiotics such as beta-lactams, aminoglycosides, trimethoprim and chloramphenicol is caused by many different acquired genes, and a substantial proportion of these are part of small mobile elements known as gene cassettes. A gene cassette consists of the gene and a downstream sequence, known as a 59-base element (59-be), that acts as a specific recombination site. Gene cassettes can move into or out of a specific receptor site (attl site) in a companion element called an integron, and integration or excision of the cassettes is catalysed by a site-specific recombinase (Intl) that is encoded by the integron. At present count there are 40 different cassette-associated resistance genes and three distinct classes of integron, each encoding a distinct Intl integrase. The same cassettes are found in all three classes of integron, indicating that cassettes can move freely between different integrons. Integrons belonging to class I often contain a further antibiotic resistance gene, sull, conferring resistance to sulphonamides. The sull gene is found in a conserved region (3'-CS) that is not present in all members of this class. Class I integrons of the sull type are most prevalent in clinical isolates and have been found in many different organisms. Even though most of them are defective transposon derivatives, having lost at least one of the transposition genes, they are none the less translocatable and consequently found in many different locations. The transposon Tn7 is the best known representative of class 2 integrons, and Tn7 and relatives are also found in many different species. | 1998 | 16904397 |
| 4469 | 18 | 0.9997 | Integrons: an antibiotic resistance gene capture and expression system. Bacteria can transfer genetic information to provide themselves with protection against most antibiotics. The acquisition of resistance gene arrays involves genetic mobile elements like plasmids and transposons. Another class of genetic structures, termed integrons, have been described and contain one or more gene cassettes located at a specific site. Integrons are defined by an intl gene encoding an integrase, a recombination site attl and a strong promoter. At least six classes of integrons have been determined according to their intl gene. Classes 1, 2 and 3 are the most studied and are largely implicated in the dissemination of antibiotic resistance. A gene cassette includes an open reading frame and, at the 3'-end, a recombination site attC. Integration or excision of cassettes occur by a site-specific recombination mechanism catalyzed by the integrase. However, insertion can occur, albeit rarely, at non-specific sites leading to a stable situation for the cassette. Cassettes are transcribed from the common promoter located in the 5'-conserved segment and expression of distal genes is reduced by the presence of upstream cassettes. Most gene cassettes encode antibiotic resistant determinants but antiseptic resistant genes have also been described. Integrons seem to have a major role in the spread of multidrug resistance in gram-negative bacteria but integrons in gram-positive bacteria were described recently. Moreover, the finding of super-integrons with gene-cassettes coding for other determinants (biochemical functions, virulence factors) in Vibrio isolates dating from 1888 suggests the likely implication of this multicomponent cassette-integron system in bacterial genome evolution before the antibiotic era and to a greater extent than initially believed. | 2000 | 10987194 |
| 4493 | 19 | 0.9997 | System to study horizontal gene exchange among microorganisms without cultivation of recipients. Ribosomal RNA genes are characterized by highly conserved sequences and are present in multiple copies in most prokaryotic chromosomes. In principle, therefore, they might serve as sites for homologous recombination between unrelated microorganisms. Plasmids containing 23S ribosomal gene sequences, from different bacteria, which had been interrupted by insertion of a kanamycin-resistance gene, were used to transform Acinetobacter sp. DSM587 (former name: Acinetobacter calcoaceticus BD413-ivl10). In all cases, homologies between the 23S rRNA genes of phylogenetically distant bacteria and Acinetobacter sp. DSM587 were sufficient for replacement recombination events. The integration events, resulting in inactivation of any one of the seven rrn operons of Acinetobacter sp. DSM587, had no observable influence on cell growth. These results suggest the possibility of rRNA genes serving as natural vehicles for horizontal gene transfer. They also provide the basis of a novel strategy to analyse gene transfer without selection or cultivation of recipient cells. Because of the highly conserved structure of bacterial rrn operons, recombination events subsequent to gene transfer can be readily identified by polymerase chain reaction amplification of the recombinant sequence using a universal forward primer for the 16S rRNA gene and a reverse primer specific for the integrated marker gene. | 1996 | 8930906 |