# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4483 | 0 | 1.0000 | Ribosomal Resistance: Emerging Problems and Potential Solutions. Many systemic antibiotics use ribosomal inhibition to suppress the replication of bacteria. Current research suggests that resistance to macrolide, lincosamide, and streptogramin B (MLS(B)) antibiotics is emerging among clinical isolates of Streptococcus pyogenes and Streptococcus pneumoniae. Erythromycin methylases, encoded by erm genes, modify an essential adenine residue in 23S rRNA and confer cross-resistance to MLS(B) antibiotics. More recently, macrolide efflux (mef) genes were identified in isolates of S. pyogenes and S. pneumoniae that show resistance to 14- and 15-membered macrolides (M phenotype). Resistance to MLSB has been associated with the increased use of erythromycin, and the recent emergence of the M phenotype has coincided with the marketing of newer macrolides. However, despite increasing macrolide resistance among clinical isolates of S. pneumoniae, convincing data on treatment failures directly attributable to MLS(B) or M phenotypes are limited. Possible solutions to emerging MLS(B) and M phenotype resistance include the introduction of alternative antibiotics, the more prudent use of antibiotics, combination therapy, molecular diagnostics, enhanced understanding of pharmacodynamic variables, and redefined resistance breakpoints. | 1999 | 11095824 |
| 4484 | 1 | 0.9999 | A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Streptococcus pneumoniae, Streptococcus pyogenes (GAS), and Streptococcus agalactiae (GBS) are bacteria that can cause a range of infections, some of them life-threatening. This review examines the spread of antibiotic resistance and its mechanisms against antibiotics for streptococcal infections. Data on high-level penicillin-resistant invasive pneumococci have been found in Brazil (42.8%) and Japan (77%). The resistance is caused by mutations in genes that encode penicillin-binding proteins. Similarly, GAS and GBS strains reported from Asia, the USA, and Africa have undergone similar transformations in PBPs. Resistance to major alternatives of penicillins, macrolides, and lincosamides has become widespread among pneumococci and streptococci, especially in Asia (70-95%). The combination of several emm types with erm(B) is associated with the development of high-level macrolide resistance in GAS. Major mechanisms are ribosomal target modifications encoded by erm genes, ribosomal alterations, and active efflux pumps that regulate antibiotic entry due to mefA/E and msrD genes. Tetracycline resistance for streptococci in different countries varied from 22.4% in the USA to 83.7/100% in China, due to tet genes. Combined tetracycline/macrolide resistance is usually linked with the insertion of ermB into the transposon carrying tetM. New quinolone resistance is increasing by between 11.5 and 47.9% in Asia and Europe. The mechanism of quinolone resistance is based on mutations in gyrA/B, determinants for DNA gyrase, or parC/E encoding topoisomerase IV. The results for antibiotic resistance are alarming, and urgently call for increased monitoring of this problem and precautionary measures for control to prevent the spread of resistant mutant strains. | 2024 | 38667036 |
| 6247 | 2 | 0.9998 | Molecular basis and evolutionary cost of a novel macrolides/lincosamides resistance phenotype in Staphylococcus haemolyticus. Staphylococcus haemolyticus (S. haemolyticus) is a coagulase-negative Staphylococcus that has become one of the primary causes of nosocomial infection. After a long period of antibiotic use, S. haemolyticus has developed multiple resistance phenotypes for macrolides and lincosamides. Herein, we evaluated four S. haemolyticus clinical isolates, of which three had antibiotic resistance patterns reported previously. The fourth isolate was resistant to both erythromycin and clindamycin in the absence of erythromycin induction. This novel phenotype, known as constitutive macrolides-lincosamides-streptogramins resistance, has been reported in other bacteria but has not been previously reported in S. haemolyticus. Investigation of the isolate demonstrated a deletion in the methyltransferase gene ermC, upstream leader peptide. This deletion resulted in constitutive MLS resistance based on whole-genome sequencing and experimental verification. Continuous expression of ermC was shown to inhibit the growth of S. haemolyticus, which turned out to be the fitness cost with no MLS pressure. In summary, this study is the first to report constitutive MLS resistance in S. haemolyticus, which provides a better understanding of MLS resistance in clinical medicine. IMPORTANCE This study identified a novel phenotype of macrolides/lincosamides resistance in Staphylococcus haemolyticus which improved a better guidance for clinical treatment. It also clarified the mechanistic basis for this form of antibiotic resistance that supplemented the drug resistance mechanism of Staphylococcus. In addition, this study elaborated on a possibility that continuous expression of some resistance genes was shown to inhibit the growth of bacteria themselves, which turned out to be the fitness cost in the absence of antibiotic pressure. | 2023 | 37724875 |
| 4414 | 3 | 0.9998 | Macrolide resistance mechanisms in Gram-positive cocci. Two principal mechanisms of resistance to macrolides have been identified in Gram-positive bacteria. Erythromycin-resistant methylase is encoded by erm genes. Resultant structural changes to rRNA prevent macrolide binding and allow synthesis of bacterial proteins to continue. Presence of the erm gene results in high-level resistance. Modification of the mechanism whereby antibiotics are eliminated from the bacteria also brings about resistance. Bacteria carrying the gene encoding macrolide efflux (i.e. the mefE gene) display relatively low-level resistance. Azithromycin, because of its ability to achieve concentrations at sites of infections, is capable of eradicating mefE-carrying strains. Other resistance mechanisms, involving stimulation of enzymatic degradation, appear not to be clinically significant. | 2001 | 11574191 |
| 4754 | 4 | 0.9998 | Enterococci and streptococci. Besides Staphylococcus aureus, other Gram-positive bacteria have become multidrug-resistant and cause therapeutic problems, particularly amongst hospitalised patients. The acquisition of vancomycin resistance by strains of Enterococcus faecium and Enterococcus faecalis is of particular concern and has resulted in treatment failures. Some of the infections caused by these bacteria do respond to treatment with new antibiotics that have been released in the last few years, however more options are required as not all enterococci are inherently susceptible and resistance is beginning to emerge amongst those that were susceptible. Resistance to commonly used antibiotics is also emerging in Streptococcus spp., particularly to the tetracyclines and macrolides. In both genera, multiresistant strains spread between patients and between hospitals. In the laboratory, these bacteria show considerable susceptibility to tigecycline, with little propensity to develop resistance, indicating that tigecycline could assume an important role in controlling infections caused by these Gram-positive bacteria. | 2007 | 17659211 |
| 4480 | 5 | 0.9998 | Anaerobic bacteria and antibiotics: What kind of unexpected resistance could I find in my laboratory tomorrow? The purpose of this article is to set out some important considerations on the main emerging antibiotic resistance patterns among anaerobic bacteria. The first point concerns the Bacteroides fragilis group and its resistance to the combination of β-lactam+β-lactamase inhibitor. When there is overproduction of cephalosporinase, it results in increased resistance to the β-lactams while maintaining susceptibility to β-lactams/β-lactamase inhibitor combinations. However, if another resistance mechanism is added, such as a loss of porin, resistances to β-lactam+β-lactamase inhibitor combinations may occur. The second point is resistance to metronidazole occurring due to nim genes. PCR detection of nim genes alone is not sufficient for predicting resistance to metronidazole; actual MIC determinations are required. Therefore, it can be assumed that other resistance mechanisms can also be involved. Although metronidazole resistance remains rare for the B. fragilis group, it has nevertheless been detected worldwide and also been observed spreading to other species. In some cases where there is only a decreased susceptibility, clinical failures may occur. The last point concerns resistance of Clostridium species to glycopeptides and lipopeptides. Low levels of resistance have been detected with these antibiotics. Van genes have been detected not only in clostridia but also in other species. In conclusion, antibiotic resistance involves different mechanisms and affects many anaerobic species and is spreading worldwide. This demonstrates the need to continue with antibiotic resistance testing and surveys in anaerobic bacteria. | 2010 | 20971200 |
| 4797 | 6 | 0.9998 | Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination. | 1998 | 9777517 |
| 3930 | 7 | 0.9998 | Class 1 integron in staphylococci. As a major concern in public health, methicillin-resistant staphylococci (MRS) still remains one of the most prevalent pathogens that cause nosocomial infections throughout the world and has been recently labeled as a "super bug" in antibiotic resistance. Thus, surveillance and investigation on antibiotic resistance mechanisms involved in clinical MRS strains may raise urgent necessity and utmost significance. As a novel antibiotic resistance mechanism, class 1 integron has been identified as a primary source of antimicrobial resistance genes in Gram-negative organisms. However, most available studies on integrons had been limited within Gram-negative microbes, little is known for clinical Gram-positive bacteria. Based on series studies of systematic integrons investigation in hundreds of staphylococci strains during 2001-2006, this review concentrated on the latest development of class 1 integron in MRS isolates, including summary of prevalence and occurrence of class 1 integron, analysis of correlation between integron and antibiotic resistance, further demonstration of the role integrons play as antibiotic determinants, as well as origin and evolution of integron-associated gene cassettes during this study period. | 2011 | 21258866 |
| 4594 | 8 | 0.9997 | Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci. | 2018 | 30253132 |
| 4857 | 9 | 0.9997 | The emergence of bacterial resistance and its influence on empiric therapy. The discovery of antimicrobial agents had a major impact on the rate of survival from infections. However, the changing patterns of antimicrobial resistance caused a demand for new antibacterial agents. Within a few years of the introduction of penicillin, the majority of staphylococci were resistant to that drug. In the 1960s the production of the semisynthetic penicillins provided an answer to the problem of staphylococcal resistance. In the early 1960s most Escherichia coli were susceptible to the new beta-lactam antibiotic ampicillin; by the end of that decade, plasmid-mediated beta-lactamase resistance was found in 30%-50% of hospital-acquired E. coli. Use of certain agents resulted in the selection of bacteria, such as Klebsiella, that are intrinsically resistant to ampicillin. The original cephalosporins were stable to beta-lactamase, but the use of these agents was in part responsible for the appearance of infections due to Enterobacter species, Citrobacter species, and Pseudomonas aeruginosa. These bacteria, as well as Serratia, were resistant to many of the available beta-lactam agents. Aminoglycosides initially provided excellent activity against most of the facultative gram-negative bacteria. However, the widespread dissemination of the genes that cause production of the aminoglycoside-inactivating enzymes altered the use of those agents. Clearly, the evolution of bacterial resistance has altered the prescribing patterns for antimicrobial agents. Knowledge that beta-lactam resistance to ampicillin or cephalothin is prevalent is causing physicians to select as empiric therapy either a combination of two or more agents or agents to which resistance is uncommon. The new cephalosporins offer a broad spectrum of anti-bacterial activity coupled with low toxicity. However, physicians must closely follow the changing ecology of bacteria when these agents are used, because cephalosporins can also select bacteria resistant to themselves and thereby abolish their value as empiric therapy. | 1983 | 6342103 |
| 4752 | 10 | 0.9997 | Antibiotic resistance in gram-positive bacteria: epidemiological aspects. The emergence and spread of antibiotic resistance in gram-positive bacterial pathogens has become an increasing problem. There has been a dramatic increase in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. This is mainly due to the clonal dissemination of certain epidemic multiply-resistant strains, for example, those of MRSA and S. pneumoniae, as well as to the spread of resistance genes as exemplified by those causing glycopeptide resistance in enterococci. | 1999 | 10511391 |
| 2506 | 11 | 0.9997 | High-level gentamicin resistance in Enterococcus: microbiology, genetic basis, and epidemiology. Antibiotic resistance is an ever-increasing problem in enterococci. These bacteria are remarkable in their ability to acquire and disseminate antibiotic resistance genes by a variety of routes. Since first described in 1979, high-level resistance to gentamicin (MIC, greater than 2,000 micrograms/mL) has spread worldwide and has been responsible for serious infections. Resistance is plasmid-mediated and due to aminoglycoside-modifying enzymes. High-level gentamicin resistance indicates that there will be no synergistic bactericidal activity with penicillin-gentamicin combinations. The epidemiology of nosocomial enterococcal infections is remarkably similar to that of nosocomial infections caused by methicillin-resistant staphylococci and by multidrug-resistant gram-negative bacilli. The most likely way these resistant bacteria are spread among hospital patients is via transient carriage on the hands of hospital personnel. Patient-to-patient and interhospital transmission of strains has been reported recently. However, clonal dissemination is not the cause of the increased frequency of resistant strains, since gentamicin resistance appears in a variety of different conjugative and nonconjugative plasmids in Enterococcus. | 1990 | 2117300 |
| 4798 | 12 | 0.9997 | Acquired vancomycin resistance in clinically relevant pathogens. Acquired resistance to vancomycin is an increasing problem in pathogenic bacteria. It is best studied and most prevalent among Enterococcus and still remains rare in other pathogenic bacteria. Different genotypes of vancomycin resistance, vanA-G, have been described. The different van gene clusters consist of up to nine genes encoding proteins of different functions; their interplay leads to an alternative cell wall precursor less susceptible to glycopeptide binding. Variants of vanA and vanB types are found worldwide, with vanA predominating; their reservoir is Enterococcus faecium. Within this species a subpopulation of hospital-adapted types exists that acquired van gene clusters and which is responsible for outbreaks of vancomycin-resistant enterococci all over the world. Acquisition of vanA by methicillin-resistant Staphylococcus aureus (MRSA) is worrisome and seven cases have been described. Nonsusceptibility to glycopeptides also occurs independently from van genes and is a growing therapeutic challenge, especially in MRSA. | 2008 | 18811239 |
| 4804 | 13 | 0.9997 | Mechanism of antimicrobial resistance and resistance transfer in anaerobic bacteria. The antimicrobial susceptibility pattern of anaerobic bacteria has been changing over the past decade. This paper reviews the mechanisms by which these organisms have become resistant to selected antibiotics and reviews data demonstrating that Bacteroides fragilis and Clostridium perfringens possess systems for transferring resistance determinants. Within bacteroides there is widespread resistance to penicillins, cephalosporins and tetracycline compounds while there have been reports of resistance to clindamycin and cefoxitin, and there is rare resistance reported for chloramphenicol and metronidazole. Transfer of resistance to penicillin, tetracycline and clindamycin has been demonstrated in bacteroides, while transfer of tetracycline resistance has been documented in clostridia. | 1982 | 6300995 |
| 4144 | 14 | 0.9997 | The diversity of antimicrobial resistance genes among staphylococci of animal origin. Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. | 2013 | 23499306 |
| 4473 | 15 | 0.9997 | The genetics of bacterial trimethoprim resistance in tropical areas. Resistance to trimethoprim in Gram-negative bacteria is largely manifested by two trimethoprim resistant dihydrofolate reductases (types I and II) encoded by genes originally located on resistance plasmids. Although trimethoprim resistance increased markedly after the clinical introduction of trimethoprim in the West, its spread has slowed and, in Edinburgh at least, has actually been declining. This reduction has been accompanied by the migration of a transposon, encoding the type I plasmid resistance gene, into the bacterial chromosome. In tropical areas, the incidence of trimethoprim resistance is very much higher. In Tanzania, it has spilled over into other bacteria outside the Enterobacteriaceae, but it was in India where the major problem existed. The majority (64%) of the Indian Enterobacteriaceae studied were resistant to the drug and most of the resistance genes were located on very large plasmids which also conferred resistance to many other antibacterial drugs. Some Indian plasmids carried a new trimethoprim resistance gene which is not detectable by conventional sensitivity tests and may be spreading unnoticed elsewhere. The proportion of trimethoprim resistance has been related to the volume of antibacterial drugs used. | 1987 | 3318025 |
| 4593 | 16 | 0.9997 | Origin, evolution and dissemination of antibiotic resistance genes. Comparison of resistance genes from different sources support the hypothesis that the antibiotic-producing microorganisms are the source of resistant determinants present in clinical isolates. There is also evidence that Gram-positive cocci (staphylococci and streptococci) can serve as a reservoir of resistance genes for Gram-negative bacteria. | 1987 | 2856426 |
| 4799 | 17 | 0.9997 | Glycopeptide-resistant enterococci: a decade of experience. Since their first description in 1988, glycopeptide-resistant enterococci (GRE) have emerged as a significant cause of nosocomial infections and colonisations, particularly in Europe and the USA. Two major genetically distinct forms of acquired resistance, designated VanA and VanB, are recognised, although intrinsic resistance occurs in some enterococcal species (VanC) and a third form of acquired resistance (VanD) has been reported recently. The biochemical basis of each resistance mechanism is similar; the resistant enterococci produce modified peptidoglycan precursors that show decreased binding affinity for glycopeptide antibiotics. Although VanA resistance is detected readily in the clinical laboratory, the variable levels of vancomycin resistance associated with the other phenotypes makes detection less reliable. Under-reporting of VanB resistance as a result of a lower detection rate may account, in part, for the difference in the numbers of enterococci displaying VanA and VanB resistance referred to the PHLS Laboratory of Hospital Infection. Since 1987, GRE have been referred from >1100 patients in almost 100 hospitals, but 88% of these isolates displayed the VanA phenotype. It is possible that, in addition to the problems of detection, there may be a real difference in the prevalence of VanA and VanB resistance reflecting different epidemiologies. Our present understanding of the genetic and biochemical basis of these acquired forms of glycopeptide resistance has been gained mainly in the last 5 years. However, these relatively new enterococcal resistances appear still to be evolving; there have now been reports of transferable VanB resistance associated with either large chromosomally borne transposons or plasmids, genetic linkage of glycopeptide resistance and genes conferring high-level resistance to aminoglycoside antibiotics, epidemic strains of glycopeptide-resistant Enterococcus faecium isolated from multiple patients in numerous hospitals, and of glycopeptide dependence (mutant enterococci that actually require these agents for growth). The gene clusters responsible for VanA and VanB resistance are located on transposable elements, and both transposition and plasmid transfer have resulted in the dissemination of these resistance genes into diverse strains of several species of enterococci. Despite extensive research, knowledge of the origins of these resistances remains poor. There is little homology between the resistance genes and DNA from either intrinsically resistant gram-positive genera or from the soil bacteria that produce glycopeptides, which argues against direct transfer to enterococci from these sources. However, recent data suggest a more distant, evolutionary relationship with genes found in glycopeptide-producing bacteria. In Europe, VanA resistance occurs in enterococci isolated in the community, from sewage, animal faeces and raw meat. This reservoir suggests that VanA may not have evolved in hospitals, and its existence has been attributed, controversially, to use of the glycopeptide avoparcin as a growth promoter, especially in pigs and poultry. However, as avoparcin has never been licensed for use in the USA and, to date, VanB resistance has not been confirmed in non-human enterococci, it is clear that the epidemiology of acquired glycopeptide resistance in enterococci is complex, with many factors contributing to its evolution and global dissemination. | 1998 | 9788808 |
| 4392 | 18 | 0.9997 | The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis. | 2021 | 34946952 |
| 4474 | 19 | 0.9997 | Mechanisms of resistance and resistance transfer in anaerobic bacteria: factors influencing antimicrobial therapy. The resistance of anaerobic bacteria to a number of antimicrobial agents has an impact on the selection of appropriate therapy for infections caused by these pathogens. Resistance to penicillin in Bacteroides fragilis has long been recognized. Most resistance is due to chromosomal beta-lactamases that are cephalosporinases. Two new enzymes that inactivate the ureidopenicillins and cefoxitin have been described in B. fragilis. The most common mechanisms of cefoxitin resistance is by the blocking of penetration of the drug into the periplasmic space. The transfer of beta-lactamase and penicillinase and of cefoxitin resistance has been demonstrated. Penicillin resistance in other Bacteroides is mediated by a penicillinase. Chloramphenicol resistance is mediated by a chloramphenicol acetyltransferase and by nitroreduction in anaerobic bacteria. Anaerobic bacteria are resistant to aminoglycosides because these organisms lack the oxidative transport system for intracellular drug accumulation. Metronidazole resistance, which is rarely encountered, is mediated by a decrease in nitroreduction of the compound to the active agent. Clindamycin-erythromycin resistance in B. fragilis is probably similar to macrolide-lincosamide-streptogramin resistance in aerobic bacteria. Two transfer factors, pBFTM10 and pBF4, which confer resistance to clindamycin have been described; the resistance determinant on them is widely distributed in nature. Tetracyline resistance in B. fragilis is mediated by a block in uptake of the drug. Transfer of tetracycline resistance is common; however, no transfer factor has been isolated. Transfer has been proposed to occur via a conjugal transposon. The special characteristics of the infected site influence the outcome of antimicrobial therapy, particularly in abscesses.(ABSTRACT TRUNCATED AT 250 WORDS) | 1984 | 6326243 |