Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
445001.0000Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Achromobacter xylosoxidans is an opportunistic pathogen known to be resistant to a wide range of antibiotics; however, the knowledge about the drug resistance mechanisms is limited. We used a high-throughput sequencing approach to sequence the genomes of the A. xylosoxidans type strain ATCC 27061 and a clinical isolate, A. xylosoxidans X02736, and then we used different bioinformatics tools to analyze the drug resistance genes in these bacteria. We obtained the complete genome sequence for A. xylosoxidans ATCC 27061 and the draft sequence for X02736. We predicted a total of 50 drug resistance-associated genes in the type strain, including 5 genes for β-lactamases and 17 genes for efflux pump systems; these genes are also conserved among other A. xylosoxidans genomes. In the clinical isolate, except for the conserved resistance genes, we also identified several acquired resistance genes carried by a new transposon embedded in a novel integrative and conjugative element. Our study provides new insights into the intrinsic and acquired drug resistance mechanisms in A. xylosoxidans, which will be helpful for better understanding the physiology of A. xylosoxidans and the evolution of antibiotic resistance in this bacterium.201525487802
445210.9997Whole-Genome Analysis of Acinetobacter baumannii Strain AB43 Containing a Type I-Fb CRISPR-Cas System: Insights into the Relationship with Drug Resistance. The CRISPR-Cas system is a bacterial and archaea adaptive immune system and is a newly recognized mechanism for controlling antibiotic resistance gene transfer. Acinetobacter baumannii (A. baumannii) is an important organism responsible for a variety of nosocomial infections. A. baumannii infections have become problematic worldwide because of the resistance of A. baumannii to multiple antibiotics. Thus, it is clinically significant to explore the relationship between the CRISPR-Cas system and drug resistance in A. baumannii. This study aimed to analyze the genomic characteristics of the A. baumannii strain AB3 containing the type I-Fb CRISPR-Cas system, which was isolated from a tertiary care hospital in China, and to investigate the relationship between the CRISPR-Cas system and antibiotic resistance in this strain. The whole-genome sequencing (WGS) of the AB43 strain was performed using Illumina and PacBio sequencing. The complete genome of AB43 consisted of a 3,854,806 bp chromosome and a 104,309 bp plasmid. The specific characteristics of the CRISPR-Cas system in AB43 are described as follows: (1) The strain AB43 carries a complete type I-Fb CRISPR-Cas system; (2) Homology analysis confirmed that the cas genes in AB43 share high sequence similarity with the same subtype cas genes; (3) A total of 28 of 105 A. baumannii AB43 CRISPR spacers matched genes in the bacteriophage genome database and the plasmid database, implying that the CRISPR-Cas system in AB43 provides immunity against invasive bacteriophage and plasmids; (4) None of the CRISPR spacers in A. baumannii AB43 were matched with antimicrobial resistance genes in the NCBI database. In addition, we analyzed the presence of antibiotic resistance genes and insertion sequences in the AB43 strain and found that the number of antibiotic resistance genes was not lower than in the "no CRISPR-Cas system" strain. This study supports the idea that the CRISPR-Cas system may inhibit drug-resistance gene expression via endogenous gene regulation, except to the published mechanism that the CRISPR-Cas system efficiently limits the acquisition of antibiotic resistance genes that make bacteria sensitive to antibiotics.202236080431
445120.9997Comparative genomics of multidrug resistance in Acinetobacter baumannii. Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.200616415984
466330.9996Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Ochrobactrum genus is comprised of soil-dwelling Gram-negative bacteria mainly reported for bioremediation of toxic compounds. Since last few years, mainly two species of this genus, O. intermedium and O. anthropi were documented for causing infections mostly in the immunocompromised patients. Despite such ubiquitous presence, study of adaptation in various niches is still lacking. Thus, to gain insights into the niche adaptation strategies, pan-genome analysis was carried out by comparing 67 genome sequences belonging to Ochrobactrum species. Pan-genome analysis revealed it is an open pan-genome indicative of the continuously evolving nature of the genus. The presence/absence of gene clusters also illustrated the unique presence of antibiotic efflux transporter genes and type IV secretion system genes in the clinical strains while the genes of solvent resistance and exporter pumps in the environmental strains. A phylogenomic investigation based on 75 core genes depicted better and robust phylogenetic resolution and topology than the 16S rRNA gene. To support the pan-genome analysis, individual genomes were also investigated for the mobile genetic elements (MGE), antibiotic resistance genes (ARG), metal resistance genes (MRG) and virulence factors (VF). The analysis revealed the presence of MGE, ARG, and MRG in all the strains which play an important role in the species evolution which is in agreement with the pan-genome analysis. The average nucleotide identity (ANI) based on the genetic relatedness between the Ochrobactrum species indicated a distinction between individual species. Interestingly, the ANI tool was able to classify the Ochrobactrum genomes to the species level which were assigned till the genus level on the NCBI database.202032428556
445540.9996A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BACKGROUND: Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. RESULTS: In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. CONCLUSIONS: The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.201223231464
438050.9996Comparative genome analysis of ciprofloxacin-resistant Pseudomonas aeruginosa reveals genes within newly identified high variability regions associated with drug resistance development. The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development.201323808957
462860.9996Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage-resistant strains that can be overcome by the analysis of metadata provided by whole-genome sequencing. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strains belonging to the ST-2 clonal complex during a decade (Ab2000 vs. 2010): 9 from 2000 to 9 from 2010. The presence of genes putatively associated with phage resistance was detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defense systems but with unknown function, and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands in the 2000 strains and 32% in the 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems. A moderately higher presence of these genes in the strains of 2010 in comparison with those of 2000 was found, especially those related to the restriction-modification system and CRISPR-Cas system. The presence of these genes in genomic islands at a higher rate in the strains of 2010 compared with those of 2000 was also detected. Whole-genome sequencing and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in possible phage therapy.202135250902
494470.9996Genomic characterization of Escherichia coli LCT-EC001, an extremely multidrug-resistant strain with an amazing number of resistance genes. BACKGROUND: Multidrug resistance is a growing global public health threat with far more serious consequences than generally anticipated. In this study, we investigated the antibiotic resistance and genomic traits of a clinical strain of Escherichia coli LCT-EC001. RESULTS: LCT-EC001 was resistant to 16 kinds of widely used antibiotics, including fourth-generation cephalosporins and carbapenems. In total, up to 68 determinants associated with antibiotic resistance were identified, including 8 beta-lactamase genes (notably producing ESBLs and KPCs), 31 multidrug efflux system genes, 6 outer membrane transport system genes, 4 aminoglycoside-modifying enzyme genes, 10 two-component regulatory system genes, and 9 other enzyme or transcriptional regulator genes, covering nearly all known drug-resistance mechanisms in E. coli. More than half of the resistance genes were located close to mobile genetic elements, such as plasmids, transposons, genomics islands, and insertion sequences. Phylogenetic analysis revealed that this strain may have evolved from E. coli K-12 but is a completely new MLST type. CONCLUSIONS: Antibiotic resistance was extremely severe in E. coli LCT-EC001, mainly due to mobile genetic elements that allowed the gain of a large quantity of resistance genes. The antibiotic resistance genes of E. coli LCT-EC001 can probably be transferred to other bacteria. To the best of our knowledge, this is the first report of a strain of E. coli which has such a large amount of antibiotic resistance genes. Apart from providing an E. coli reference genome with an extremely high multidrug-resistant background for future analyses, this work also offers a strategy for investigating the complement and characteristics of genes contributing to drug resistance at the whole-genome level.201931139265
438880.9996Detection of Genes Related to Antibiotic Resistance in Leptospira. Leptospirosis is a disease caused by the bacteria of the Leptospira genus, which can usually be acquired by humans through contact with urine from infected animals; it is also possible for this urine to contaminate soils and bodies of water. The disease can have deadly consequences in some extreme cases. Fortunately, until now, patients with leptospirosis have responded adequately to treatment with doxycycline and azithromycin, and no cases of antibiotic resistance have been reported. However, with the extensive use of such medications, more bacteria, such as Staphylococci and Enterococci, are becoming resistant. The purpose of this study is to determine the presence of genes related to antibiotic resistance in the Leptospira genus using bioinformatic tools, which have not been undertaken in the past. Whole genomes from the 69 described Leptospira species were downloaded from NCBI's GeneBank and analyzed using CARD (The Comprehensive Antibiotic Resistant Database) and RAST (Rapid Annotations using Subsystem Technology). After a detailed genomic search, 12 genes associated with four mechanisms were found: resistance to beta-lactamases, vancomycin, aminoglycoside adenylyltransferases, as well as multiple drug efflux pumps. Some of these genes are highly polymorphic among different species, and some of them are present in multiple copies in the same species. In conclusion, this study provides evidence of the presence of genes related to antibiotic resistance in the genomes of some species of the genus Leptospira, and it is the starting point for future experimental evaluation to determine whether these genes are transcriptionally active in some species and serovars.202439330892
452390.9996Mosaic structure of a multiple-drug-resistant, conjugative plasmid from Campylobacter jejuni. Partial sequence analysis of a tet(O) plasmid from a multiple-drug-resistant clinical isolate of Campylobacter jejuni revealed 10 genes or pseudogenes encoding different aminoglycoside inactivating enzymes, transposase-like genes, and multiple unknown genes from a variety of pathogenic and commensal bacteria. The plasmid could be mobilized by a P incompatibility group plasmid into Escherichia coli, where it apparently integrated into the chromosome and expressed high-level resistance to multiple aminoglycoside antibiotics. This work provides new information about both the nature of drug resistance in C. jejuni and the ability of C. jejuni to exchange genes with other bacterial species.200515917546
4449100.9996The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle. Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of foreign languages.201323071100
4930110.9996Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone.201829617860
4627120.9996Antibiotic resistance mechanisms of Myroides sp. Bacteria of the genus Myroides (Myroides spp.) are rare opportunistic pathogens. Myroides sp. infections have been reported mainly in China. Myroides sp. is highly resistant to most available antibiotics, but the resistance mechanisms are not fully elucidated. Current strain identification methods based on biochemical traits are unable to identify strains accurately at the species level. While 16S ribosomal RNA (rRNA) gene sequencing can accurately achieve this, it fails to give information on the status and mechanisms of antibiotic resistance, because the 16S rRNA sequence contains no information on resistance genes, resistance islands or enzymes. We hypothesized that obtaining the whole genome sequence of Myroides sp., using next generation sequencing methods, would help to clarify the mechanisms of pathogenesis and antibiotic resistance, and guide antibiotic selection to treat Myroides sp. infections. As Myroides sp. can survive in hospitals and the environment, there is a risk of nosocomial infections and pandemics. For better management of Myroides sp. infections, it is imperative to apply next generation sequencing technologies to clarify the antibiotic resistance mechanisms in these bacteria.201626984839
6267130.9996Beta-lactamase dependent and independent evolutionary paths to high-level ampicillin resistance. The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases.202438918379
4631140.9996Genome Analysis of an Enterococcal Prophage, Entfac.MY. BACKGROUND: Bacteriophages are bacterial parasites. Unlike lytic bacteriophages, lysogenic bacteriophages do not multiply immediately after entering the host cells and may integrate their genomes into the bacterial genomes as prophages. Prophages can include various phenotypic and genotypic effects on the host bacteria. Enterococcus spp. are Gram-positive bacteria that cause infections in humans and animals. In recent decades, these bacteria have become resistant to various antimicrobials, including vancomycin. The aim of this study was to analyze genome of an enterococcal prophage. METHODS: In this study, Enterococcus faecium EntfacYE was isolated from biological samples and its genome was analyzed using next-generation sequencing method. RESULTS: Overall, 254 prophage genes were identified in the bacterial genome. The prophage included 39 housekeeping, 41 replication and regulation, 80 structural and packaging, and 48 lysis genes. Moreover, 46 genes with unknown functions were identified. All genes were annotated in DNA Data Bank of Japan. CONCLUSION: In general, most prophage genes were linked to packaging and structure (31.5%) gene group. However, genes with unknown functions included a high proportion (18.11%), which indicated necessity of further analyses. Genomic analysis of the prophages can be effective in better understanding of their roles in development of bacterial resistance to antibiotics. Moreover, identification and study of prophages can help researchers develop genetic engineering tools and novel infection therapies.202236061127
4929150.9996Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. The incidence of multidrug-resistant Acinetobacter baumannii has posed a major challenge for clinical treatment. There is still a significant gap in understanding the mechanism causing multi-drug resistance (MDR). In this study, the genomes of 10 drug sensitive and 10 multi-drug resistant A.baumannii strains isolated from a hospital in China were sequenced and compared. The antibiotic resistance genes, virulence factors were determined and CRIPSR-Cas system along with prophages were detected. The results showed that MDR strains are significantly different from the drug sensitive strains in the CARD entries, patterns of sequences matching up to plasmids, VFDB entries and CRISPR-Cas system. MDR strains contain unique CARD items related to antibiotic resistance which are absent in sensitive strains. Furthermore, sequences from genomes of MDR strains can match up with plasmids from more diversified bacteria genera compared to drug sensitive strains. MDR strains also contain a lower level of CRISPR genes and larger amount of prophages, along with higher levels of spacer sequences. These findings provide new experimental evidences for the study of the antibiotic resistance mechanism of A. baumannii.202235307599
9889160.9996Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.202132781088
6266170.9996Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis.201223022568
4524180.9996Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter.201627154456
4487190.9996Detecting mutations that confer oxazolidinone resistance in gram-positive bacteria. Resistance to oxazolidinone antibiotics, including linezolid, in Gram-positive bacteria is mediated by single-nucleotide polymorphisms (SNPs) in the 23S ribosomal RNA. A G2576U change (encoded by a G2576T mutation in the rRNA genes) is found in most resistant clinical isolates of enterococci and staphylococci; a variety of changes have been found in resistant mutants selected in vitro. Pyrosequencing can be used to detect SNPs known to confer oxazolidinone resistance, including the G2576T change. Most bacteria have more than one rRNA gene copy and Pyrosequencing can also be used for allele quantification, i.e., to estimate the proportions of mutant vs wild-type alleles. The number of mutated rRNA gene copies correlates roughly with the level of oxazolidinone resistance displayed by resistant isolates. This chapter summarizes the Pyrosequencing assays that have been developed in our laboratory for analyzing oxazolidinone-resistant enterococci and staphylococci.200717185761