# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4441 | 0 | 1.0000 | Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (e.g., beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa--are reviewed to illustrate the varied ways in which resistant bacteria develop. | 2006 | 16735149 |
| 4442 | 1 | 1.0000 | Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa-are reviewed to illustrate the varied ways in which resistant bacteria develop. | 2006 | 16813980 |
| 4440 | 2 | 0.9999 | Antibiotic resistance mechanisms of clinically important bacteria. Bacterial resistance to antimicrobial drugs is an increasing health and economic problem. Bacteria may be innate resistant or acquire resistance to one or few classes of antimicrobial agents. Acquired resistance arises from: (i) mutations in cell genes (chromosomal mutation) leading to cross-resistance, (ii) gene transfer from one microorganism to other by plasmids (conjugation or transformation), transposons (conjugation), integrons and bacteriophages (transduction). After a bacterium gains resistance genes to protect itself from various antimicrobial agents, bacteria can use several biochemical types of resistance mechanisms: antibiotic inactivation (interference with cell wall synthesis, e.g., β-lactams and glycopeptide), target modification (inhibition of protein synthesis, e.g., macrolides and tetracyclines; interference with nucleic acid synthesis, e.g., fluoroquinolones and rifampin), altered permeability (changes in outer membrane, e.g., aminoglycosides; new membrane transporters, e.g., chloramphenicol), and "bypass" metabolic pathway (inhibition of metabolic pathway, e.g., trimethoprim-sulfamethoxazole). | 2011 | 21822035 |
| 4429 | 3 | 0.9999 | General mechanisms of resistance to antibiotics. Resistance to antimicrobial agents may result from intrinsic properties of organisms, through mutation and through plasmid- and transposon-specified genes. beta-Lactam resistance is most frequently associated with one or more chromosomal- or plasmid-specified beta-lactamases. Recently, mutations modifying penicillin-binding proteins have been detected with increased frequency as a cause of beta-lactam resistance. Mixed mechanisms, reduced permeability and tolerance are other causes of resistance. Aminoglycoside resistance always involves some modification of drug uptake, most often due to a variety of enzymes modifying these compounds. Reduced uptake is a primary cause of resistance in anaerobic bacteria and bacteria growing anaerobically, some strains of Pseudomonas aeruginosa, and mutants that arise during antimicrobial therapy and are defective in energy-generation systems. Resistance to other antimicrobial agents is presented in tabular form. | 1988 | 3062000 |
| 4402 | 4 | 0.9999 | Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections. | 2020 | 32052662 |
| 9521 | 5 | 0.9999 | Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Resistance against nearly all antibiotics used clinically have been documented in bacteria. There is an ever-increasing danger caused by multidrug-resistant Gram-negative bacteria in both hospital and community settings. In Gram-negative bacteria, intrinsic resistance to currently available antibiotics is mainly due to overexpressed efflux pumps which are constitutively present and also presence of protective outer membrane. Combination therapy, i.e., use of two or more antibiotics, was thought to be an effective strategy because it took advantage of the additive effects of multiple antimicrobial mechanisms, lower risk of resistance development and lower mortality and improved clinical outcome. However, none of the benefits were seen in in vivo studies. Antibiotic hybrids are being used to challenge the growing drug resistance threat and increase the usefulness of current antibiotic arsenal. Antibiotic hybrids are synthetic constructs of two molecules which are covalently linked. These could be two antibiotics or antibiotic with an adjuvant (efflux pump inhibitor, siderophore, etc.) which increases the access of the antibiotics to the target. The concepts, developments and challenges in the future use of antibiotic hybrids are discussed here. Majority of the studies have been conducted on fluoroquinolones and aminoglycosides molecules. The antibiotic tobramycin has the property to enhance the action of antimicrobial agents against which the multidrug-resistant Gram-negative bacteria were earlier resistant, and thus potentiating the action of legacy antibiotics. Antibiotic hybrids may have a role as the silver bullet in Gram-negative bacteria to overcome drug resistance as well as extend the spectrum of existing antibiotics. | 2019 | 31219074 |
| 4444 | 6 | 0.9999 | Mechanisms of resistance to fluoroquinolones. Fluoroquinolones have some of the properties of an 'ideal' anti-microbial agent. Because of their potent broad spectrum activity and absence of transferable mechanism of resistance or inactivating enzymes, it was hoped that clinical resistance to this useful group of drugs would not occur. However, over the years, due to intense selective pressure and relative lack of potency of the available quinolones against some strains, bacteria have evolved at least two mechanisms of resistance: (i) alteration of molecular targets, and (ii) reduction of drug accumulation. DNA gyrase and topoisomerase IV are the two molecular targets of fluoroquinolones. Mutations in specified regions (quinolone resistance-determining region) in genes coding for the gyrase and/or topoisomerase leads to clinical resistance. An efflux pump effective in pumping out hydrophilic quinolones has been described. Newer fluoroquinolones which recognize both molecular targets and have improved pharmacokinetic properties offer hope of higher potency, thereby reducing the probability of development of resistance. | 1999 | 10573971 |
| 4253 | 7 | 0.9999 | Molecular mechanisms of polymyxin resistance and detection of mcr genes. Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria. | 2019 | 30439931 |
| 4833 | 8 | 0.9999 | Emerging mechanisms of fluoroquinolone resistance. Broad use of fluoroquinolones has been followed by emergence of resistance, which has been due mainly to chromosomal mutations in genes encoding the subunits of the drugs' target enzymes, DNA gyrase and topoisomerase IV, and in genes that affect the expression of diffusion channels in the outer membrane and multidrug-resistance efflux systems. Resistance emerged first in species in which single mutations were sufficient to cause clinically important levels of resistance (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). Subsequently, however, resistance has emerged in bacteria such as Campylobacter jejuni, Escherichia coli, and Neisseria gonorrhoeae, in which multiple mutations are required to generate clinically important resistance. In these circumstances, the additional epidemiologic factors of drug use in animals and human-to-human spread appear to have contributed. Resistance in Streptococcus pneumoniae, which is currently low, will require close monitoring as fluoroquinolones are used more extensively for treating respiratory tract infections. | 2001 | 11294736 |
| 4403 | 9 | 0.9999 | Multidrug efflux pumps of Gram-positive bacteria. Gram-positive organisms are responsible for some of the most serious of human infections. Resistance to front-line antimicrobial agents can complicate otherwise curative therapy. These organisms possess multiple drug resistance mechanisms, with drug efflux being a significant contributing factor. Efflux proteins belonging to all five transporter families are involved, and frequently can transport multiple structurally unrelated compounds resulting in a multidrug resistance (MDR) phenotype. In addition to clinically relevant antimicrobial agents, MDR efflux proteins can transport environmental biocides and disinfectants which may allow persistence in the healthcare environment and subsequent acquisition by patients or staff. Intensive research on MDR efflux proteins and the regulation of expression of their genes is ongoing, providing some insight into the mechanisms of multidrug recognition and transport. Inhibitors of many of these proteins have been identified, including drugs currently being used for other indications. Structural modifications guided by structure-activity studies have resulted in the identification of potent compounds. However, lack of broad-spectrum pump inhibition combined with potential toxicity has hampered progress. Further work is required to gain a detailed understanding of the multidrug recognition process, followed by application of this knowledge in the design of safer and more highly potent inhibitors. | 2016 | 27449594 |
| 4252 | 10 | 0.9999 | Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. | 2011 | 22919572 |
| 4251 | 11 | 0.9999 | Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. | 2011 | 21811491 |
| 4428 | 12 | 0.9999 | Multidrug resistance in enteric and other gram-negative bacteria. In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved. | 1996 | 8647368 |
| 4241 | 13 | 0.9999 | Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified. | 1993 | 8212509 |
| 4832 | 14 | 0.9999 | Antibiotic resistance of Pseudomonas species. Pseudomonas species are highly versatile organisms with genetic and physiologic capabilities that allow them to flourish in environments hostile to most pathogenic bacteria. Within the lung of the patient with cystic fibrosis, exposed to a number of antimicrobial agents, highly resistant clones of Pseudomonas are selected. These may have acquired plasmid-mediated genes encoding a variety of beta-lactamases or aminoglycoside modifying enzymes. Frequently these resistance determinants are on transposable elements, facilitating their dissemination among the population of bacteria. Mutations in chromosomal genes can also occur, resulting in constitutive expression of normally repressed enzymes, such as the chromosomal cephalosporinase of Pseudomonas aeruginosa or Pseudomonas cepacia. These enzymes may confer resistance to the expanded-spectrum beta-lactam drugs. Decreased cellular permeability to the beta-lactams and the aminoglycosides also results in clinically significant antibiotic resistance. The development of new drugs with anti-Pseudomonas activity, beta-lactam agents and the quinolones, has improved the potential for effective chemotherapy but has not surpassed the potential of the organisms to develop resistance. | 1986 | 3701534 |
| 9504 | 15 | 0.9999 | Antibiotic and biocide resistance in bacteria. Antibiotic-resistant bacteria pose an ever-increasing therapeutic problem. The ways whereby bacteria circumvent drug action are many and varied, ranging from intrinsic impermeability to acquired resistance (involving plasmids, transposons and mutations). Antibiotics may be unable to reach susceptible target sites, they may be enzymatically inactivated, modified or expelled or mutations may arise such as to render the target sites insusceptible. Mechanisms of bacterial resistance to biocides are less well understood but cellular impermeability is a major factor. Plasmid-mediated efflux of cationic antiseptics in antibiotic-resistant Staphylococcus aureus strains has been demonstrated but its role in the resistance of these organisms to the biocide concentrations used in clinical practice is unclear. An association between resistance to antibiotics and biocides in Gram-negative bacteria has also been observed but it is often difficult at present to reach definite conclusions about genetic linkages between antibiotic resistance and biocide resistance. | 1996 | 8935738 |
| 4425 | 16 | 0.9999 | Multidrug resistance in bacteria. Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. | 2009 | 19231985 |
| 4443 | 17 | 0.9998 | Cellular Studies of an Aminoglycoside Potentiator Reveal a New Inhibitor of Aminoglycoside Resistance. Aminoglycosides are a group of broad-spectrum antibiotics that have been used in the clinic for almost a century. The rapid spread of bacterial genes coding for aminoglycoside-modifying enzymes has, however, dramatically decreased the utility of aminoglycosides. We have previously reported several aminoglycoside potentiators that work by inhibiting aminoglycoside N-6'-acetyltransferase, one of the most common determinants of aminoglycoside resistance. Among these, prodrugs that combine the structure of an aminoglycoside with that of pantothenate into one molecule are especially promising. We report here a series of cellular studies to investigate the activity and mechanism of action of these prodrugs further. Our results reveal a new aminoglycoside resistance inhibitor, as well as the possibility that these prodrugs are transformed into more than one inhibitor in bacteria. We also report that the onset of the potentiators is rapid. Their low cell cytotoxicity, good stability, and potentiation of various aminoglycosides, against both Gram-positive and Gram-negative bacteria, make them interesting compounds for the development of new drugs. | 2018 | 30059603 |
| 4433 | 18 | 0.9998 | The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. A last line of defence against "superbugs" are the vancomycin group antibiotics. This review describes the determination of their mode of action, and a mechanism of resistance to them. Remarkably, this mechanism of resistance can be overcome without directly modifying the binding site of the antibiotics for the cell-wall precursors of pathogenic bacteria. | 1999 | 29711719 |
| 793 | 19 | 0.9998 | Efflux-mediated drug resistance in bacteria. Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps. | 2004 | 14717618 |