# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4420 | 0 | 1.0000 | New perspectives in tetracycline resistance. Until recently, tetracycline efflux was thought to be the only mechanism of tetracycline resistance. As studies of tetracycline resistance have shifted to bacteria outside the Enterobacteriaceae, two other mechanisms of resistance have been discovered. The first is ribosomal protection, a type of resistance which is found in mycoplasmas, Gram-positive and Gram-negative bacteria and may be the most common type of tetracycline resistance in nature. The second is tetracycline modification, which has been found only in two strains of an obligate anaerobe (Bacteroides). Recent studies have also turned up such anomalies as a tetracycline efflux pump which does not confer resistance to tetracycline and a gene near the replication origin of a tetracycline-sensitive Bacillus strain which confers resistance when it is amplified. | 1990 | 2181236 |
| 4419 | 1 | 0.9999 | Epidemiology of tetracycline-resistance determinants. Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline. | 1994 | 7850200 |
| 4418 | 2 | 0.9999 | Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear. For some tetracycline resistance genes, expression is regulated. In efflux genes found in gram-negative enteric bacteria, regulation is via a repressor that interacts with tetracycline. Gram-positive efflux genes appear to be regulated by an attenuation mechanism. Recently it was reported that at least one of the ribosome protection genes is regulated by attenuation. Tetracycline resistance genes are often found on transmissible elements. Efflux resistance genes are generally found on plasmids, whereas genes involved in ribosome protection have been found on both plasmids and self-transmissible chromosomal elements (conjugative transposons). One class of conjugative transposon, originally found in streptococci, can transfer itself from streptococci to a variety of recipients, including other gram-positive bacteria, gram-negative bacteria, and mycoplasmas. Another class of conjugative transposons has been found in the Bacteroides group. An unusual feature of the Bacteroides elements is that their transfer is enhanced by preexposure to tetracycline. Thus, tetracycline has the double effect of selecting for recipients that acquire a resistance gene and stimulating transfer of the gene. | 1992 | 1423217 |
| 4417 | 3 | 0.9999 | Genetic mobility and distribution of tetracycline resistance determinants. Since 1953, tetracycline-resistant bacteria have been found increasingly in humans, animals, food and the environment. Tetracycline resistance is normally due to the acquisition of new genes and is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from its action. Gram-negative efflux genes are frequently associated with conjugative plasmids, whereas Gram-positive efflux genes are often found on small mobilizable plasmids or in the chromosome. The ribosomal protection genes are generally associated with conjugative transposons which have a preference for the chromosome. Recently, tetracycline resistance genes have been found in the genera Mycobacterium, Nocardia, Streptomyces and Treponema. The Tet M determinant codes for a ribosomal protection protein which can be found in Gram-positive, Gram-negative, cell-wall-free, aerobic, anaerobic, pathogenic, opportunistic and normal flora species. This promiscuous nature may be correlated with its location on a conjugative transposon and its ability to cross most biochemical and physical barriers found in bacteria. The Tet B efflux determinant is unlike other efflux gene products because it confers resistance to tetracycline, doxycycline and minocycline and has the widest host range of all Gram-negative efflux determinants. We have hypothesized that mobility and the environment of the bacteria may help influence the ultimate host range of specific tet genes. If we are to reverse the trend towards increasingly antibiotic-resistant pathogenic bacteria, we will need to change how antibiotics are used in both human and animal health as well as food production. | 1997 | 9189643 |
| 4416 | 4 | 0.9999 | Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. Tetracycline-resistant bacteria were first isolated in 1953 from Shigella dysenteriae, a bacterium which causes bacterial dysentery. Since then tetracycline-resistant bacterial have been found in increasing numbers of species and genera. This has resulted in reduced effectiveness of tetracycline therapy over time. Tetracycline resistance is normally due to the acquisition of new genes often associated with either a mobile plasmid or a transposon. These tetracycline resistance determinants are distinguishable both genetically and biochemically. Resistance is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from the action of tetracycline. Gram-negative tetracycline efflux proteins are linked to repressor proteins which in the absence of tetracycline block transcription of the repressor and structural efflux genes. In contrast, expression of the Gram-positive tetracycline efflux genes and some of the ribosomal protection genes appears to be regulated by attenuation of mRNA transcription. Specific tetracycline resistance genes have been identified in 32 Gram-negative and 22 Gram-positive genera. Tetracycline-resistant bacteria are found in pathogens, opportunistic and normal flora species. Tetracycline-resistant bacteria can be isolated from man, animals, food, and the environment. The nonpathogens in each of these ecosystems may play an important role as reservoirs for the antibiotic resistance genes. It is clear that if we are to reverse the trend toward increasingly antibiotic-resistant pathogenic bacteria we will need to change how antibiotics are used in both human and animal health and food production. | 1996 | 8916553 |
| 4415 | 5 | 0.9999 | Staphylococcal resistance to streptogramins and related antibiotics. Streptogramin and related antibiotics are mixtures of two compounds, A and B (e.g. Dalfopristin and Quinupristin), particularly against Gram-positive bacteria. Staphylococci resistant to these mixtures are always resistant to the A compounds but are not necessarily resistant to the B compounds. Resistance to A compounds and to the mixtures is conferred by acetyltransferases or ATP-binding proteins via unknown mechanisms. Several genes encoding each of the two categories of protein have been characterized and regularly detected on plasmids. Genes encoding lactonases, which inactivate B compounds, have been occasionally detected on these plasmids. Staphylococci which harbour plasmids conferring resistance to A compounds should not be treated with the mixtures even if they appear susceptible in vitro. Indeed, susceptibility to the mixtures of staphylococci carrying resistance to A compounds has often been attributed to partial loss of the plasmids conferring this resistance. When staphylococci are constitutively resistant to B compounds, the in vitro activities of the mixtures should be evaluated, because they are better correlated than MICs with their efficacy in therapy. | 1998 | 17092802 |
| 4831 | 6 | 0.9999 | Mechanism of quinolone resistance in anaerobic bacteria. Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated. | 2003 | 12848726 |
| 4471 | 7 | 0.9999 | Update on acquired tetracycline resistance genes. This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed. | 2005 | 15837373 |
| 4474 | 8 | 0.9999 | Mechanisms of resistance and resistance transfer in anaerobic bacteria: factors influencing antimicrobial therapy. The resistance of anaerobic bacteria to a number of antimicrobial agents has an impact on the selection of appropriate therapy for infections caused by these pathogens. Resistance to penicillin in Bacteroides fragilis has long been recognized. Most resistance is due to chromosomal beta-lactamases that are cephalosporinases. Two new enzymes that inactivate the ureidopenicillins and cefoxitin have been described in B. fragilis. The most common mechanisms of cefoxitin resistance is by the blocking of penetration of the drug into the periplasmic space. The transfer of beta-lactamase and penicillinase and of cefoxitin resistance has been demonstrated. Penicillin resistance in other Bacteroides is mediated by a penicillinase. Chloramphenicol resistance is mediated by a chloramphenicol acetyltransferase and by nitroreduction in anaerobic bacteria. Anaerobic bacteria are resistant to aminoglycosides because these organisms lack the oxidative transport system for intracellular drug accumulation. Metronidazole resistance, which is rarely encountered, is mediated by a decrease in nitroreduction of the compound to the active agent. Clindamycin-erythromycin resistance in B. fragilis is probably similar to macrolide-lincosamide-streptogramin resistance in aerobic bacteria. Two transfer factors, pBFTM10 and pBF4, which confer resistance to clindamycin have been described; the resistance determinant on them is widely distributed in nature. Tetracyline resistance in B. fragilis is mediated by a block in uptake of the drug. Transfer of tetracycline resistance is common; however, no transfer factor has been isolated. Transfer has been proposed to occur via a conjugal transposon. The special characteristics of the infected site influence the outcome of antimicrobial therapy, particularly in abscesses.(ABSTRACT TRUNCATED AT 250 WORDS) | 1984 | 6326243 |
| 4414 | 9 | 0.9998 | Macrolide resistance mechanisms in Gram-positive cocci. Two principal mechanisms of resistance to macrolides have been identified in Gram-positive bacteria. Erythromycin-resistant methylase is encoded by erm genes. Resultant structural changes to rRNA prevent macrolide binding and allow synthesis of bacterial proteins to continue. Presence of the erm gene results in high-level resistance. Modification of the mechanism whereby antibiotics are eliminated from the bacteria also brings about resistance. Bacteria carrying the gene encoding macrolide efflux (i.e. the mefE gene) display relatively low-level resistance. Azithromycin, because of its ability to achieve concentrations at sites of infections, is capable of eradicating mefE-carrying strains. Other resistance mechanisms, involving stimulation of enzymatic degradation, appear not to be clinically significant. | 2001 | 11574191 |
| 4431 | 10 | 0.9998 | Tetracycline therapy: update. Tetracyclines have been used for treatment of a wide variety of gram-positive and gram-negative bacterial infections since the 1950s. In addition to being effective against traditional bacteria, tetracyclines have been used to treat infections due to intracellular chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites and a variety of noninfectious conditions. They are important for treatment of and prophylaxis against infections with bacteria that could be used in biological weapons. Bacterial resistance to tetracycline was identified shortly after the introduction of therapy. At present, tetracycline resistance in bacteria can occur by acquisition of >or=1 of the 36 different genes, by mutations to host efflux pumps or in their 16S rRNA sequences, or by alteration in the permeability of the cell. In contrast, tetracycline resistance has not yet been described in protozoa or other eukaryotic organisms. | 2003 | 12567304 |
| 4830 | 11 | 0.9998 | Mechanisms of resistance to quinolones. The increased use of fluoroquinolones has led to increasing resistance to these antimicrobials, with rates of resistance that vary by both organism and geographic region. Resistance to fluoroquinolones typically arises as a result of alterations in the target enzymes (DNA gyrase and topoisomerase IV) and of changes in drug entry and efflux. Mutations are selected first in the more susceptible target: DNA gyrase, in gram-negative bacteria, or topoisomerase IV, in gram-positive bacteria. Additional mutations in the next most susceptible target, as well as in genes controlling drug accumulation, augment resistance further, so that the most-resistant isolates have mutations in several genes. Resistance to quinolones can also be mediated by plasmids that produce the Qnr protein, which protects the quinolone targets from inhibition. Qnr plasmids have been found in the United States, Europe, and East Asia. Although Qnr by itself produces only low-level resistance, its presence facilitates the selection of higher-level resistance mutations, thus contributing to the alarming increase in resistance to quinolones. | 2005 | 15942878 |
| 9408 | 12 | 0.9998 | Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Although in silico analysis have suggested that the antibiotic resistance genes in actinomycetes appear to be the origins of some antibiotic resistance genes, we have shown that recent horizontal transfer of antibiotic resistance genes from actinomycetes to other medically important bacteria have not taken place. Although it has been speculated in Benveniste and Davies' attractive hypothesis that antibiotic resistance genes of actinomycetes are origins of antibiotic resistance genes in pathogenic bacteria because the actinomycetes require mechanisms such as metabolic enzymes (encoded by the antibiotic resistance genes) to degrade the antibiotics they produce or to transport the antibiotics outside the bacterial cells, this hypothesis has never been proven. Both the phylogenetic tree constructed using 16S rRNA gene sequences and that constructed using concatenated amino acid sequences of 15 housekeeping genes extracted from 90 bacterial genomes showed that the actinomycetes is more ancestral to most other bacteria, including the pathogenic Gram-negative bacteria, Gram-positive bacteria, and Chlamydia species. Furthermore, the tetracycline resistance gene of Bifidobacterium longum is more ancestral to those of other pathogenic bacteria and the actinomycetes, which is in line with the ancestral position of B. longum. These suggest that the evolution of antibiotic resistance genes of antibiotic-producing bacteria in general parallels the evolution of the corresponding bacteria. The ancestral position of the antibiotic resistance genes in actinomycetes is probably unrelated to the fact that they produce antibiotics, but simply because actinomycetes are more ancestral than pathogenic bacteria. | 2006 | 16824692 |
| 4488 | 13 | 0.9998 | The cfr and cfr-like multiple resistance genes. The Cfr methyl transferase causes an RNA methylation of the bacterial ribosomes impeding reduced or abolished binding of many antibiotics acting at the peptidyl transferase center. It provides multi-resistance to eight classes of antibiotics, most of which are in clinical and veterinary use. The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition, the presence of the cfr gene has been detected in harbours and food markets. | 2018 | 29378339 |
| 4470 | 14 | 0.9998 | R-factors in gram-positive and gram-negative aerobic bacteria selected by antimicrobial therapy. Populations of resistant bacteria emerge by the operation of selective pressure on resistant bacteria. The acquisition of resistance by sensitive bacteria is dependent upon the genetic determinant of the resistance, and its ability to move between different bacterial cells and within cells between different replicons. In contrast to chromosomal mediated resistance, plasmids and transposable elements coding for resistance to antibiotics have been the major factors in the spread of resistance and the prevalence of resistant bacteria in humans, farm animals and poultry. Different types of R-factors can be described. Resistance to ampicillin, tetracycline, chloramphenicol, gentamicin, trimethoprim, erythromycin may exemplify epidemiological aspects of resistance genes in Gram-negative and Gram-positive bacteria. The ecological destiny of resistant bacterial populations suggests the role of other factors than antibiotic resistance: characters of a particular host, host-plasmid relationship and properties which may lead to survival and adaptation in a given niche. | 1986 | 3547625 |
| 4379 | 15 | 0.9998 | Drug resistance in Chromobacterium violaceum. Chromobacterium violaceum is a free-living bacterium commonly found in aquatic habitats of tropical and subtropical regions of the world. This bacterium is able to produce a large variety of products of biotechnological and pharmacological use. Although C. violaceum is considered to be non-pathogenic, some cases of severe infections in humans and other animals have been reported. Genomic data on the type strain ATCC 12472(T) has provided a comprehensive basis for detailed studies of pathogenicity, virulence and drug resistance genes. A large number of open reading frames associated with various mechanisms of drug resistance were found, comprising a remarkable feature of this organism. Amongst these, beta-lactam (penicillin and cephalosporin) and multidrug resistance genes (drug efflux pumps) were the most numerous. In addition, genes associated with bacitracin, bicyclomycin, chloramphenicol, kasugamycin, and methylenomycin were also found. It is postulated that these genes contribute to the ability of C. violaceum to compete with other bacteria in the environment, and also may help to explain the common drug resistance phenotypes observed in infections caused by this bacterium. | 2004 | 15100994 |
| 4497 | 16 | 0.9998 | Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm. | 2019 | 31448060 |
| 4143 | 17 | 0.9998 | Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Efflux mechanisms that account for resistance to a variety of antimicrobial agents are commonly found in a wide range of bacteria. Two major groups of efflux systems are known, specific exporters and transporters conferring multidrug resistance (MDR). The MDR systems are able to remove antimicrobials of different classes from the bacterial cell and occasionally play a role in the intrinsic resistance of some bacteria to certain antimicrobials. Their genes are commonly located on the bacterial chromosome. In contrast, the genes coding for specific efflux systems are often associated with mobile genetic elements which can easily be interchanged between bacteria. Specific efflux systems have mainly been identified with resistances to macrolides, lincosamides and/or streptogramins, tetracyclines, as well as chloramphenicol/florfenicol in Gram-positive and Gram-negative bacteria. In this review, we focus on the molecular biology of antimicrobial resistance mediated by specific efflux systems and highlight the association of the respective resistance genes with mobile genetic elements and their distribution across species and genus borders. | 2003 | 13678822 |
| 4835 | 18 | 0.9998 | Genetic and biochemical basis of resistance of Enterobacteriaceae to beta-lactam antibiotics. Resistance to beta-lactam drugs is usually determined by genes mediating the production of beta-lactamases. These genes can be located on resistance plasmids or on the chromosome. Resistance to drugs which have been available for many years is mostly transposable. Although the origin of these genes is not known, it is possible to draw a hypothetical flow diagram of the evolution of resistance genes in general. The mechanism of resistance although mediated in Gram-negative bacteria mostly by beta-lactamases cannot be simply described as the hydrolytic function of the enzyme. It is a complex interaction involving the affinity of the drug for the target and the lactamase, the amount of drug in the periplasmic space, the amount of enzyme and the number of lethal target sites. Usually one of these factors is predominant. | 1986 | 3491818 |
| 9827 | 19 | 0.9998 | Evolution of bacterial resistance to antibiotics during the last three decades. Bacterial resistance to antibiotics is often plasmid-mediated and the associated genes encoded by transposable elements. These elements play a central role in evolution by providing mechanisms for the generation of diversity and, in conjunction with DNA transfer systems, for the dissemination of resistances to other bacteria. At the University Hospital of Zaragoza, extensive efforts have been made to define both the dissemination and evolution of antibiotic resistance by studying the transferable R plasmids and transposable elements. Here we describe the research on bacterial resistance to antibiotics in which many authors listed in the references have participated. The aspects of bacterial resistance dealt with are: (i) transferable resistance mediated by R plasmids in Gram-negative bacteria, (ii) R plasmid-mediated resistance to apramycin and hygromycin in clinical strains, (iii) the transposon Tn1696 and the integron In4, (iv) expression of Escherichia coli resistance genes in Haemophilus influenzae, (v) aminoglycoside-modifying-enzymes in the genus Mycobacterium with no relation to resistance, and (vi) macrolide-resistance and new mechanisms developed by Gram-positive bacteria. | 1998 | 10943375 |