# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 438 | 0 | 1.0000 | Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5 alpha were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism. | 2009 | 19555480 |
| 423 | 1 | 0.9991 | Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization. As the first stage in investigating the genetic basis of natural variation in Escherichia coli, the gene(s) conferring the ability to use sucrose as a carbon and energy source (given the symbol sac+) was transferred from a wild strain to K12, which does not use sucrose. The sac+ region was transferred by two different methods. On both occasions it took a chromosomal location at minute 50.5 on the linkage map, between aroC and supN, in the region of the dsd genes, which confer the ability to use D-serine as a carbon and energy source. When the sac+ region was present in the K12 chromosome the bacteria were unable to use D-serine as a carbon and energy source. In F' sac+/dsd+ diploids, the dsd+ genes were similarly not expressed. Strain K12(sac+) bacteria were sensitive to inhibition by D-serine; they mutated to D-serine resistance with much greater frequency than did a dsd mutant of K12. Such bacteria also mutated frequently to use raffinose. Strain K12(sac+) bacteria did not utilize sucrose when they carried a mutation affecting the phosphotransferase system. | 1979 | 372492 |
| 8456 | 2 | 0.9991 | Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Transposon-directed insertion site sequencing was used to identify genes required by Bacillus thuringiensis to survive in non-axenic plant/soil microcosms. A total of 516 genetic loci fulfilled the criteria as conferring survival characteristics. Of these, 127 (24.6 %) were associated with uptake and transport systems; 227 loci (44.0 %) coded for enzymatic properties; 49 (9.5 %) were gene regulation or sensory loci; 40 (7.8 %) were structural proteins found in the cell envelope or had enzymatic activities related to it and 24 (4.7 %) were involved in the production of antibiotics or resistance to them. Eighty-three (16.1 %) encoded hypothetical proteins or those of unknown function. The ability to form spores was a key survival characteristic in the microcosms: bacteria, inoculated in either spore or vegetative form, were able to multiply and colonise the soil, whereas a sporulation-deficient mutant was not. The presence of grass seedlings was critical to colonisation. Bacteria labelled with green fluorescent protein were observed to adhere to plant roots. The sporulation-specific promoter of spo0A, the key regulator of sporulation, was strongly activated in the rhizosphere. In contrast, the vegetative-specific promoters of spo0A and PlcR, a pleiotropic regulator of genes with diverse activities, were only very weakly activated. | 2014 | 24310935 |
| 437 | 3 | 0.9991 | Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene. | 1990 | 2156811 |
| 484 | 4 | 0.9991 | Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. We have isolated 25 new strains of streptomycetes from soil samples of a polluted site at the former uranium mine, Wismut, in eastern Thuringia, Germany. The strains grew on medium containing 1 mM NiCl2 and thus were resistant to the heavy metal ion. Seven of the strains were further characterized. All of these strains were resistant to heavy metals in various degrees with up to 10 mM resistance against NiCl2 supplied with the liquid minimal growth medium. The high level of resistance prompted us to look for high affinity nickel transporter genes thought to provide a means to eliminate the excess nickel ions form the cells. Degenerate oligonucleotide primers derived from sequences of P-type ATPase transporter genes of Gram negative bacteria identified a fragment which shows deduced amino acid sequence similarities to known high affinity nickel transporters. Investigation of two genes obtained from the isolates Streptomyces spec. E8 and F4 showed high sequence divergence. This was unexpected since a transmissible plasmid had been thought to convey heavy metal resistance. | 2000 | 11199488 |
| 6232 | 5 | 0.9991 | Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes. The inability of Hyphomicrobium X to grow on compounds such as pyruvate and succinate is most likely due to the absence of a functional pyruvate dehydrogenase (PDH) complex. Further support for this was sought by studying the effect of the introduction of the Escherichia coli pdh genes in Hyphomicrobium X on the pattern of substrate utilization by the latter organism. These genes were cloned by in vivo techniques using the broad-host range conjugative plasmid RP4::Mucts. Plasmid RP4 derivatives containing pdh genes were selected by their ability to complement a pyruvate dehydrogenase deletion mutant of E. coli, strain JRG746 recA (ace-1pd) delta 18. The plasmids thus obtained could be transferred through an intermediary host (C600 recA), selecting only for an antibiotic resistance coded for by RP4 and back into JRG746 or other E. coli pdh mutants, upon which they still conferred the wild type phenotype. Enzyme assays showed that the latter strains, when carrying plasmid RP4'pdh1 also possessed PDH complex activity. Conjugation between the auxotrophic E. coli JRG746 (RP4'pdh1) strain and Hyphomicrobium X on pyruvate minimal agar gave rise to progeny which, on the basis of its morphology (stalked bacteria), their ability to grow on C1-compounds and to denitrify (now also with pyruvate) were identified as hyphomicrobia. This Hyphomicrobium X transconjugant was also able to grow in minimal medium with succinate, but no other novel growth substrates have been identified so far.(ABSTRACT TRUNCATED AT 250 WORDS) | 1984 | 6393893 |
| 445 | 6 | 0.9991 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 430 | 7 | 0.9990 | Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. DNA fragments generated by the EcoRI of HindIII endonucleases from the low copy number antibiotic resistance plasmids R6 and R6-5 were separately cloned using the high copy number ColE1 or pML21 plasmid vectors and the insertional inactivation procedure. The hybrid plasmids that were obtained were used to determine the location of the EcoRI and HindIII cleavage sites on the parent plasmid genomes by means of electron microscope heteroduplex analysis and agarose gel electrophoresis. Ultracentrifugation of the cloned fragments in caesium chloride gradients localized the high buoyant density regions of R6-5 to fragments that carry the genes for resistance to streptomycin-spectinomycin, sulfonamide, and mercury and a low buoyant density region to fragments that carry the tetracycline resistance determinant. Functional analysis of hybrid plasmids localized a number of plasmid properties such as resistances to antibiotics and mercury and several replication functions to specific regions of the R6-5 genome. Precise localisation of the genes for resistance to chloramphenicol, kanamycin, fusidic acid and tetracycline was possible due to the presence of identified restriction endonuclease cleavage sites within these determinants. Only one region competent for autonomous replication was identified on the R6-5 plasmid genome and this was localized to EcoRI fragment 2 and HindIII fragment 1. However, two additional regions of replication activity designated RepB and RepC, themselves incapable of autonomous replication but capable supporting replication of a linked ColE1 plasmid in polA- bacteria, were also identified. | 1978 | 672900 |
| 3052 | 8 | 0.9990 | Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by sigma 55 of B. subtilis RNA polymerase. | 1983 | 6410152 |
| 387 | 9 | 0.9990 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 451 | 10 | 0.9990 | Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerC(Ab) and XerD(Ab)) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerC(Ab), indicating that the first step in the recombination reaction took place. The results described show that XerC(Ab) and XerD(Ab) are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria. | 2020 | 32668667 |
| 4499 | 11 | 0.9990 | Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material. | 1987 | 3032095 |
| 379 | 12 | 0.9990 | Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. A broad host range cloning vehicle that can be mobilized at high frequency into Gram-negative bacteria has been constructed from the naturally occurring antibiotic resistance plasmid RK2. The vehicle is 20 kilobase pairs in size, encodes tetracycline resistance, and contains two single restriction enzyme sites suitable for cloning. Mobilization is effected by a helper plasmid consisting of the RK2 transfer genes linked to a ColE1 replicon. By use of this plasmid vehicle, a gene bank of the DNA from a wild-type strain of Rhizobium meliloti has been constructed and established in Escherichia coli. One of the hybrid plasmids in the bank contains a DNA insert of approximately 26 kilobase pairs which has homology to the nitrogenase structural gene region of Klebsiella pneumoniae. | 1980 | 7012838 |
| 5964 | 13 | 0.9990 | Heat shock treatment increases the frequency of loss of an erythromycin resistance-encoding transposable element from the chromosome of Lactobacillus crispatus CHCC3692. A 3,165-bp chromosomally integrated transposon, designatedTn3692, of the gram-positive strain Lactobacillus crispatus CHCC3692 contains an erm(B) gene conferring resistance to erythromycin at concentrations of up to 250 micrograms/ml. Loss of this resistance can occur spontaneously, but the rate is substantially increased by heat shock treatment. Heat shock treatment at 60 degrees C resulted in an almost 40-fold increase in the frequency of erythromycin-sensitive cells (erythromycin MIC, 0.047 micrograms/ml). The phenotypic change was followed by a dramatic increase in transcription of the transposase gene and the concomitant loss of an approximately 2-kb DNA fragment carrying the erm(B) gene from the 3,165-bp erm transposon. In cells that were not subjected to heat shock, transcription of the transposase gene was not detectable. The upstream sequence of the transposase gene did not show any homology to known heat shock promoters in the gene data bank. Significant homology (>99%) was observed between the erythromycin resistance-encoding gene from L. crispatus CHCC3692 and the erm(B) genes from other gram-positive bacteria, such as Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium, and Lactobacillus reuteri, which strongly indicates a common origin of the erm(B) gene for these species. The transposed DNA element was not translocated to other parts of the genome of CHCC3692, as determining by Southern blotting, PCR analysis, and DNA sequencing. No other major aberrations were observed, as judged by colony morphology, growth performance of the strain, and pulsed-field gel electrophoresis. These observations suggest that heat shock treatment could be used as a tool for the removal of unwanted antibiotic resistance genes harbored in transposons flanked by insertion sequence elements or transposases in lactic acid bacteria used for animal and human food production. | 2003 | 14660363 |
| 4496 | 14 | 0.9990 | Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. BACKGROUND: Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. OBJECTIVES: We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. METHODS: We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. RESULTS: The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. CONCLUSIONS: With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli. | 2021 | 33655294 |
| 5961 | 15 | 0.9990 | Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences. | 2011 | 21281423 |
| 4498 | 16 | 0.9990 | A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated. | 2008 | 18024520 |
| 386 | 17 | 0.9990 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 439 | 18 | 0.9990 | Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Acinetobacter baumannii 19606 harbors pMAC, a 9540-bp plasmid that contains 11 predicted open-reading frames (ORFs). Cloning and transformation experiments using Acinetobacter calcoaceticus BD413 mapped replication functions within a region containing four 21-bp direct repeats (ori) and ORF 1, which codes for a predicted replication protein. Subcloning and tri-parental mating experiments mapped mobilization functions to the product of ORF 11 and an adjacent predicted oriT. Three ORFs code for proteins that share similarity to hypothetical proteins encoded by plasmid genes found in other bacteria, while the predicted products of three others do not match any known sequence. The product of ORF 8 is similar to Ohr, a hydroperoxide reductase responsible for organic peroxide detoxification and resistance in bacteria. This ORF is immediately upstream of a coding region whose product is related to the MarR family of transcriptional regulators. Disk diffusion assays showed that A. baumannii 19606 is resistant to the organic peroxide-generating compounds cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (t-BHP), although to levels lower than those detected in Pseudomonas aeruginosa PAO1. Cloning and introduction of the ohr and marR ORFs into Escherichia coli was associated with an increase in resistance to CHP and t-BHP. This appears to be the first case in which the genetic determinants involved in organic peroxide resistance are located in an extrachromosomal element, a situation that can facilitate the horizontal transfer of genetic elements coding for a function that protects bacterial cells from oxidative damage. | 2006 | 16530832 |
| 8455 | 19 | 0.9990 | RT-PCR: characterization of long multi-gene operons and multiple transcript gene clusters in bacteria. Reverse transcription (RT)-PCR is a valuable tool widely used for analysis of gene expression. In bacteria, RT-PCR is helpful beyond standard protocols of northern blot RNA/DNA hybridization (to identify transcripts) and primer extension (to locate their start points), as these methods have been difficult with transcripts that are low in abundance or unstable, similar to long multi-gene operons. In this report, RT-PCR is adapted to analyze transcripts that form long multi-gene operons--where they start and where they stop. The transcripts can also be semiquantitated to follow the expression of genes under different growth conditions. Examples using RT-PCR are presented with two different multi-gene systems for metal cation resistance to silver and mercury ions. The silver resistance system [9 open reading frames (ORFs); 12.5 kb] is shown by RT-PCR to synthesize three nonoverlapping messenger RNAs that are transcribed divergently. In the mercury resistance system (8 ORFs; 6.3 kb), all the genes are transcribed in the same orientation, and two promoter sites produce overlapping transcripts. For RT-PCR, reverse transcriptase enzyme is used to synthesize first-strand cDNA that is used as a template for PCR amplification of single-gene products, from the beginning, middle or end of long multi-gene, multi-transcript gene clusters. | 1999 | 10572645 |