Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
436001.0000Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.202337761923
435910.9998Whole-genome sequencing of Alcaligenes sp. strain MMA: insight into the antibiotic and heavy metal resistant genes. Introduction: A wide range of pollutants, including the likes of xenobiotics, heavy metals, and antibiotics, are characteristic of marine ecosystems. The ability of the bacteria to flourish under high metal stress favors the selection of antibiotic resistance in aquatic environments. Increased use and misuse of antibiotics in medicine, agriculture, and veterinary have posed a grave concern over antimicrobial resistance. The exposure to these heavy metals and antibiotics in the bacteria drives the evolution of antibiotic and heavy metal resistance genes. In the earlier study by the author Alcaligenes sp. MMA was involved in the removal of heavy metals and antibiotics. Alcaligenes display diverse bioremediation capabilities but remain unexplored at the level of the genome. Methods: To shed light on its genome, the Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The genome annotation was done using Rapid annotation using subsystem technology (RAST). Given the spread of antimicrobial resistance and the generation of multi-drug resistant pathogens (MDR), the strain MMA was checked for potential antibiotic and heavy metal resistance genes Further, we checked for the presence of biosynthetic gene clusters in the draft genome. Results: Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The RAST analysis revealed the presence of 3685 protein-coding genes, involved in the removal of antibiotics and heavy metals. Multiple metal-resistant genes and genes conferring resistance to tetracycline, beta-lactams, and fluoroquinolones were present in the draft genome. Many types of BGCs were predicted, such as siderophore. The secondary metabolites of fungi and bacteria are a rich source of novel bioactive compounds which have the potential to in new drug candidates. Discussion: The results of this study provide information on the strain MMA genome and are valuable for the researcher in further exploitation of the strain MMA for bioremediation. Moreover, whole-genome sequencing has become a useful tool to monitor the spread of antibiotic resistance, a global threat to healthcare.202337251338
466320.9997Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Ochrobactrum genus is comprised of soil-dwelling Gram-negative bacteria mainly reported for bioremediation of toxic compounds. Since last few years, mainly two species of this genus, O. intermedium and O. anthropi were documented for causing infections mostly in the immunocompromised patients. Despite such ubiquitous presence, study of adaptation in various niches is still lacking. Thus, to gain insights into the niche adaptation strategies, pan-genome analysis was carried out by comparing 67 genome sequences belonging to Ochrobactrum species. Pan-genome analysis revealed it is an open pan-genome indicative of the continuously evolving nature of the genus. The presence/absence of gene clusters also illustrated the unique presence of antibiotic efflux transporter genes and type IV secretion system genes in the clinical strains while the genes of solvent resistance and exporter pumps in the environmental strains. A phylogenomic investigation based on 75 core genes depicted better and robust phylogenetic resolution and topology than the 16S rRNA gene. To support the pan-genome analysis, individual genomes were also investigated for the mobile genetic elements (MGE), antibiotic resistance genes (ARG), metal resistance genes (MRG) and virulence factors (VF). The analysis revealed the presence of MGE, ARG, and MRG in all the strains which play an important role in the species evolution which is in agreement with the pan-genome analysis. The average nucleotide identity (ANI) based on the genetic relatedness between the Ochrobactrum species indicated a distinction between individual species. Interestingly, the ANI tool was able to classify the Ochrobactrum genomes to the species level which were assigned till the genus level on the NCBI database.202032428556
838330.9997Novel insights into carbohydrate utilisation, antimicrobial resistance, and sporulation potential in Roseburia intestinalis isolates across diverse geographical locations. Roseburia intestinalis is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of R. intestinalis within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits.202540089923
435840.9997Genomic profiling of pediococcus acidilactici BCB1H and identification of its key features for Biotechnological innovation, food technology and medicine. Lactic acid bacteria has been extensively used in food industry because of widespread properties and Pediococcus is among one of them. This study aims to conduct a comprehensive genomic analysis of Pediococcus acidilactici strain BCB1H to elucidate its genetic composition, functional elements, and potential biotechnological applications. The objectives include identifying key genomic features such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, which will highlight the adaptability and potential of P. acidilactici strain BCB1H for use in a variety of industrial and therapeutic applications. P. acidilactici strain BCB1H was analyzed using whole-genome sequencing, which used advanced sequencing technologies to obtain comprehensive genomic data. Key genomic features, such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, were identified through bioinformatics analyses. The genomic analysis of P. acidilactici strain BCB1H revealed a genome size of approximately 1.92 million base pairs with a GC content of 42.4%. The annotation identified 1,895 genes across 192 subsystems, highlighting the metabolic pathways and functional categories. Notably, specialty genes associated with carbohydrate metabolism, stress response, pathogenicity, and amino acid synthesis were identified, underscoring the versatility and potential applications in food technology and medicine. These findings shed light on the genetic makeup and functional potential of P. acidilactici strain BCB1H, highlighting its flexibility and industrial importance. The genetic traits discovered suggest its prospective use in probiotics, food preservation, and biotechnological advancements.202539971970
609450.9997Genomic characterization and computational phenotyping of nitrogen-fixing bacteria isolated from Colombian sugarcane fields. Previous studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.202133911103
867760.9997Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Elevated concentration of non-essential persistent heavy metals and metalloids in the soil is detrimental to essential soil microbes and plants, resulting in diminished diversity and biomass. Thus, isolation, screening, and whole genomic analysis of potent strains of bacteria from arable lands with inherent capabilities of heavy metal resistance and plant growth promotion hold the key for bio remedial applications. This study is an attempt to do the same. In this study, a potent strain of Pseudomonas aeruginosa was isolated from paddy fields, followed by metabolic profiling using FTIR, metal uptake analysis employing ICP-MS, whole genome sequencing and comparative codon usage analysis. ICP-MS study provided insights into a high degree of Cd uptake during the exponential phase of growth under cumulative metal stress to Cd, Zn and Co, which was further corroborated by the detection of cadA gene along with czcCBA operon in the genome upon performing whole-genome sequencing. This potent strain of Pseudomonas aeruginosa also harboured genes, such as copA, chrA, znuA, mgtE, corA, and others conferring resistance against different heavy metals, such as Cd, Zn, Co, Cu, Cr, etc. A comparative codon usage bias analysis at the genomic and genic level, whereby several heavy metal resistant genes were considered in the backdrop of two housekeeping genes among 40 Pseudomonas spp. indicated the presence of a relatively strong codon usage bias in the studied strain. With this work, an effort was made to explore heavy metal-resistant bacteria (isolated from arable soil) and whole genome sequence analysis to get insight into metal resistance for future bio remedial applications.202235763098
463870.9997Comprehensive Scanning of Prophages in Lactobacillus: Distribution, Diversity, Antibiotic Resistance Genes, and Linkages with CRISPR-Cas Systems. Prophage integration, release, and dissemination exert various effects on host bacteria. In the genus Lactobacillus, they may cause bacteriophage contamination during fermentation and even regulate bacterial populations in the gut. However, little is known about their distribution, genetic architecture, and relationships with their hosts. Here, we conducted prophage prediction analysis on 1,472 genomes from 16 different Lactobacillus species and found prophage fragments in almost all lactobacilli (99.8%), with 1,459 predicted intact prophages identified in 64.1% of the strains. We present an uneven prophage distribution among Lactobacillus species; multihabitat species retained more prophages in their genomes than restricted-habitat species. Characterization of the genome features, average nucleotide identity, and landscape visualization presented a high genome diversity of Lactobacillus prophages. We detected antibiotic resistance genes in more than 10% of Lactobacillus prophages and validated that the occurrence of resistance genes conferred by prophage integration was possibly associated with phenotypic resistance in Lactobacillus plantarum. Furthermore, our broad and comprehensive examination of the distribution of CRISPR-Cas systems across the genomes predicted type I and type III systems as potential antagonistic elements of Lactobacillus prophage. IMPORTANCE Lactobacilli are inherent microorganisms in the human gut and are widely used in the food processing industries due to their probiotic properties. Prophages were reportedly hidden in numerous Lactobacillus genomes and can potentially contaminate entire batches of fermentation or modulate the intestinal microecology once they are released. Therefore, a comprehensive scanning of prophages in Lactobacillus is essential for the safety evaluation and application development of probiotic candidates. We show that prophages are widely distributed among lactobacilli; however, intact prophages are more common in multihabitat species and display wide variations in genome feature, integration site, and genomic organization. Our data of the prophage-mediated antibiotic resistance genes (ARGs) and the resistance phenotype of lactobacilli provide evidence for deciphering the putative role of prophages as vectors of the ARGs. Furthermore, understanding the association between prophages and CRISPR-Cas systems is crucial to appreciate the coevolution of phages and Lactobacillus.202134060909
900480.9996Shedding light on the bacterial resistance to toxic UV filters: a comparative genomic study. UV filters are toxic to marine bacteria that dominate the marine biomass. Ecotoxicology often studies the organism response but rarely integrates the toxicity mechanisms at the molecular level. In this study, in silico comparative genomics between UV filters sensitive and resistant bacteria were conducted in order to unravel the genes responsible for a resistance phenotype. The genomes of two environmentally relevant Bacteroidetes and three Firmicutes species were compared through pairwise comparison. Larger genomes were carried by bacteria exhibiting a resistant phenotype, favoring their ability to adapt to environmental stresses. While the antitoxin and CRISPR systems were the only distinctive features in resistant Bacteroidetes, Firmicutes displayed multiple unique genes that could support the difference between sensitive and resistant phenotypes. Several genes involved in ROS response, vitamin biosynthesis, xenobiotic degradation, multidrug resistance, and lipophilic compound permeability were shown to be exclusive to resistant species. Our investigation contributes to a better understanding of UV filters resistance phenotypes, by identifying pivotal genes involved in key pathways.202134760358
437590.9996Evidence of a large novel gene pool associated with prokaryotic genomic islands. Microbial genes that are "novel" (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger "arsenal" of novel genes for adaptation than previously thought.200516299586
8385100.9996Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. IMPORTANCE: Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease.201627613689
4373110.9996Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.201425426110
4389120.9996Elucidating the mechanism of antimicrobial resistance in Mycobacterium tuberculosis using gene interaction networks. Antimicrobial resistance (AMR) in microorganisms is an urgent global health threat. AMR of Mycobacterium tuberculosis is associated with significant morbidity and mortality. It is of great importance to underpin the resistance pathways involved in the mechanisms of AMR and identify the genes that are directly involved in AMR. The focus of the current study was the bacteria M. tuberculosis, which carries AMR genes that give resistance that lead to multidrug resistance. We, therefore, built a network of 43 genes and examined for potential gene-gene interactions. Then we performed a clustering analysis and identified three closely related clusters that could be involved in multidrug resistance mechanisms. Through the bioinformatics pipeline, we consistently identified six-hub genes (dnaN, polA, ftsZ, alr, ftsQ, and murC) that demonstrated the highest number of interactions within the clustering analysis. This study sheds light on the multidrug resistance of MTB and provides a protocol for discovering genes that might be involved in multidrug resistance, which will improve the treatment of resistant strains of TB.202336858742
4372130.9996Plasmidome of Listeria spp.-The repA-Family Business. Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.202134638661
4386140.9996Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.201122194979
4639150.9996Genomic and Phenotypic Characterization of Mastitis-Causing Staphylococci and Probiotic Lactic Acid Bacteria Isolated from Raw Sheep's Milk. Dairy products play a crucial role in human nutrition as they provide essential nutrients. However, the presence of diverse microorganisms in these products can pose challenges to food safety and quality. Here, we provide a comprehensive molecular characterization of a diverse collection of lactic acid bacteria (LAB) and staphylococci isolated from raw sheep's milk. Whole-genome sequencing, phenotypic characterization, and bioinformatics were employed to gain insight into the genetic composition and functional attributes of these bacteria. Bioinformatics analysis revealed the presence of various genetic elements. Important toxin-related genes in staphylococci that contribute to their pathogenic potential were identified and confirmed using phenotypic assays, while adherence-related genes, which are essential for attachment to host tissues, surfaces in the dairy environment, and the creation of biofilms, were also present. Interestingly, the Staphylococcus aureus isolates belonged to sequence type 5, which largely consists of methicillin-susceptible isolates that have been involved in severe nosocomial infections. Although genes encoding methicillin resistance were not identified, multiple resistance genes (RGs) conferring resistance to aminoglycosides, macrolides, and fluroquinolones were found. In contrast, LAB had few inherently present RGs and no virulence genes, suggesting their likely safe status as food additives in dairy products. LAB were also richer in bacteriocins and carbohydrate-active enzymes, indicating their potential to suppress pathogens and effectively utilize carbohydrate substrates, respectively. Additionally, mobile genetic elements, present in both LAB and staphylococci, may facilitate the acquisition and dissemination of genetic traits, including RGs, virulence genes, and metabolic factors, with implications for food quality and public health. The molecular and phenotypic characterization presented herein contributes to the effort to mitigate risks and infections (e.g., mastitis) and enhance the safety and quality of milk and products thereof.202337762186
8387160.9996Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.201728189581
4381170.9996Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.201626820467
4385180.9996Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. The enterococci, which are among the leading causes of multidrug-resistant (MDR) hospital infection, are notable for their environmental ruggedness, which extends to intrinsic antibiotic resistance. To identify genes that confer this unique property, we used Tn-seq to comprehensively explore the genome of MDR Enterococcus faecalis strain MMH594 for genes important for growth in nutrient-containing medium and with low-level antibiotic challenge. As expected, a large core of genes for DNA replication, expression, and central metabolism, shared with other bacteria, are intolerant to transposon disruption. However, genes were identified that are important to E. faecalis that are either absent from or unimportant for Staphylococcus aureus and Streptococcus pneumoniae fitness when similarly tested. Further, 217 genes were identified that when challenged by sub-MIC antibiotic levels exhibited reduced tolerance to transposon disruption, including those previously shown to contribute to intrinsic resistance, and others not previously ascribed this role. E. faecalis is one of the few Gram-positive bacteria experimentally shown to possess a functional Entner-Doudoroff pathway for carbon metabolism, a pathway that contributes to stress tolerance in other microbes. Through functional genomics and network analysis we defined the unusual structure of this pathway in E. faecalis and assessed its importance. These approaches also identified toxin-antitoxin and related systems that are unique and active in E. faecalis Finally, we identified genes that are absent in the closest nonenterococcal relatives, the vagococci, and that contribute importantly to fitness with and without antibiotic selection, advancing an understanding of the unique biology of enterococci.IMPORTANCE Enterococci are leading causes of antibiotic-resistant infection transmitted in hospitals. The intrinsic hardiness of these organisms allows them to survive disinfection practices and then proliferate in the gastrointestinal tracts of antibiotic-treated patients. The objective of this study was to identify the underlying genetic basis for its unusual hardiness. Using a functional genomic approach, we identified traits and pathways of general importance for enterococcal survival and growth that distinguish them from closely related pathogens as well as ancestrally related species. We further identified unique traits that enable them to survive antibiotic challenge, revealing a large set of genes that contribute to intrinsic antibiotic resistance and a smaller set of uniquely important genes that are rare outside enterococci.202033234689
9648190.9996The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes.202234856283