# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4353 | 0 | 1.0000 | Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics. The human skin microbiota, comprising a diverse range of microorganisms, including bacteria, viruses, and fungi, plays an important role in maintaining skin health and protecting against pathogenic invasions. Among these microorganisms, certain bacteria produce bacteriocins, which are ribosomal peptides with potent antimicrobial properties. This study presents a novel computational approach to identify and predict bacteriocins from microbial genomes comprising sebaceous region of the skin, aiming to explore their therapeutic potential. Through genome analysis using advanced bioinformatics tools, we identified potential genes, operons, open reading frames (ORFs), and promoter regions linked to bacteriocin production. The BAGEL4 platform was employed to detect structural bacteriocin genes, while modelling bacterial growth and bacteriocin expression under various environmental conditions was conducted using MATLAB's SimBiology application. The results revealed the optimal conditions for bacteriocin production and highlighted promising candidates for further experimental validation. These findings underscore the significance of skin microbiota as a source of novel bacteriocins, offering potential alternatives to traditional antibiotics amidst rising antimicrobial resistance. | 2025 | 40702306 |
| 9508 | 1 | 0.9997 | Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens. | 2011 | 21417775 |
| 9507 | 2 | 0.9996 | Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Huge demand of safe and natural preservatives has opened new area for intensive research on bacteriocins to unravel the novel range of antimicrobial compounds that could efficiently fight off the food-borne pathogens. Since food safety has become an increasingly important international concern, the application of bacteriocins from lactic acid bacteria that target food spoilage/pathogenic bacteria without major adverse effects has received great attention. Different modes of actions of these bacteriocins have been suggested and identified, like pore-forming, inhibition of cell-wall/nucleic acid/protein synthesis. However, development of resistance in the food spoilage and pathogenic bacteria against these bacteriocins is a rising concern. Emergence and spread of mutant strains resistant to bacteriocins is hampering food safety. It has spurred an interest to understand the bacteriocin resistance phenomenon displayed by the food pathogens, which will be helpful in mitigating the resistance problem. Therefore, present review is focused on the different resistance mechanisms adopted by food pathogens to overcome bacteriocin. | 2019 | 30610901 |
| 9406 | 3 | 0.9996 | Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. | 2015 | 25784907 |
| 9563 | 4 | 0.9996 | Do we need new antibiotics? The search for new targets and new compounds. Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria. | 2010 | 21086099 |
| 4220 | 5 | 0.9996 | Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation. | 2023 | 35694810 |
| 9670 | 6 | 0.9996 | An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments. | 2018 | 30013271 |
| 4358 | 7 | 0.9996 | Genomic profiling of pediococcus acidilactici BCB1H and identification of its key features for Biotechnological innovation, food technology and medicine. Lactic acid bacteria has been extensively used in food industry because of widespread properties and Pediococcus is among one of them. This study aims to conduct a comprehensive genomic analysis of Pediococcus acidilactici strain BCB1H to elucidate its genetic composition, functional elements, and potential biotechnological applications. The objectives include identifying key genomic features such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, which will highlight the adaptability and potential of P. acidilactici strain BCB1H for use in a variety of industrial and therapeutic applications. P. acidilactici strain BCB1H was analyzed using whole-genome sequencing, which used advanced sequencing technologies to obtain comprehensive genomic data. Key genomic features, such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, were identified through bioinformatics analyses. The genomic analysis of P. acidilactici strain BCB1H revealed a genome size of approximately 1.92 million base pairs with a GC content of 42.4%. The annotation identified 1,895 genes across 192 subsystems, highlighting the metabolic pathways and functional categories. Notably, specialty genes associated with carbohydrate metabolism, stress response, pathogenicity, and amino acid synthesis were identified, underscoring the versatility and potential applications in food technology and medicine. These findings shed light on the genetic makeup and functional potential of P. acidilactici strain BCB1H, highlighting its flexibility and industrial importance. The genetic traits discovered suggest its prospective use in probiotics, food preservation, and biotechnological advancements. | 2025 | 39971970 |
| 4223 | 8 | 0.9996 | Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity. | 2022 | 36144306 |
| 8396 | 9 | 0.9996 | Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome. Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms. | 2023 | 37887806 |
| 9671 | 10 | 0.9996 | Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels. | 2012 | 22517266 |
| 9606 | 11 | 0.9995 | Rapid identification of key antibiotic resistance genes in E. coli using high-resolution genome-scale CRISPRi screening. Bacteria possess a vast repertoire of genes to adapt to environmental challenges. Understanding the gene fitness landscape under antibiotic stress is crucial for elucidating bacterial resistance mechanisms and antibiotic action. To explore this, we conducted a genome-scale CRISPRi screen using a high-density sgRNA library in Escherichia coli exposed to various antibiotics. This screen identified essential genes under antibiotic-induced stress and offered insights into the molecular mechanisms underlying bacterial responses. We uncovered previously unrecognized genes involved in antibiotic resistance, including essential membrane proteins. The screen also underscored the importance of transcriptional modulation of essential genes in antibiotic tolerance. Our findings emphasize the utility of genome-wide CRISPRi screening in mapping the genetic landscape of antibiotic resistance. This study provides a valuable resource for identifying potential targets for antibiotics or antimicrobial strategies. Moreover, it offers a framework for exploring transcriptional regulatory networks and resistance mechanisms in E. coli and other bacterial pathogens. | 2025 | 40352728 |
| 9517 | 12 | 0.9995 | Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms. | 2023 | 37401756 |
| 9005 | 13 | 0.9995 | Insights into the Vibrio Genus: A One Health Perspective from Host Adaptability and Antibiotic Resistance to In Silico Identification of Drug Targets. The genus Vibrio comprises an important group of ubiquitous bacteria of marine systems with a high infectious capacity for humans and fish, which can lead to death or cause economic losses in aquaculture. However, little is known about the evolutionary process that led to the adaptation and colonization of humans and also about the consequences of the uncontrollable use of antibiotics in aquaculture. Here, comparative genomics analysis and functional gene annotation showed that the species more related to humans presented a significantly higher amount of proteins associated with colonization processes, such as transcriptional factors, signal transduction mechanisms, and iron uptake. In comparison, those aquaculture-associated species possess a much higher amount of resistance-associated genes, as with those of the tetracycline class. Finally, through subtractive genomics, we propose seven new drug targets such as: UMP Kinase, required to catalyze the phosphorylation of UMP into UDP, essential for the survival of bacteria of this genus; and, new natural molecules, which have demonstrated high affinity for the active sites of these targets. These data also suggest that the species most adaptable to fish and humans have a distinct natural evolution and probably undergo changes due to anthropogenic action in aquaculture or indiscriminate/irregular use of antibiotics. | 2022 | 36290057 |
| 8921 | 14 | 0.9995 | Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells. | 2006 | 16889414 |
| 8468 | 15 | 0.9995 | Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays. | 2009 | 19684161 |
| 9404 | 16 | 0.9995 | The Application of Transposon Insertion Sequencing in Identifying Essential Genes in B. fragilis. Essential genes are those that are indispensable for the survival of organism under specific growth conditions. Investigating essential genes in pathogenic bacteria not only helps to understand vital biological networks but also provides novel targets for drug development. Availability of genetic engineering tools and high-throughput sequencing methods has enabled essential genes identification in many pathogenic gram-positive and gram-negative bacteria. Bacteroides fragilis is one of the major bacteria specific of human gastrointestinal microbiota. When B. fragilis moves out of its niche, it turns into deadly pathogen. Here, we describe detailed method for the essential gene identification in B. fragilis. Generated transposon mutant pool can be used for other applications such as identification of genes responsible for drug resistance in B. fragilis. | 2022 | 34709623 |
| 4224 | 17 | 0.9995 | The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed. | 2018 | 30123208 |
| 9405 | 18 | 0.9995 | Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance. | 2021 | 34410638 |
| 8319 | 19 | 0.9995 | Mechanisms of resistance to commercially relevant entomopathogenic bacteria. Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria. | 2019 | 31358196 |