Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
435101.0000Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. BACKGROUND: Ancient microbiota information represents an important resource to evaluate bacterial evolution and to explore the biological spread of infectious diseases in history. The soft tissue of frozen mummified humans, such as the Tyrolean Iceman, has been shown to contain bacterial DNA that is suitable for population profiling of the prehistoric bacteria that colonized such ancient human hosts. RESULTS: Here, we performed a microbial cataloging of the distal gut microbiota of the Tyrolean Iceman, which highlights a predominant abundance of Clostridium and Pseudomonas species. Furthermore, in silico analyses allowed the reconstruction of the genome sequences of five ancient bacterial genomes, including apparent pathogenic ancestor strains of Clostridium perfringens and Pseudomonas veronii species present in the gut of the Tyrolean Iceman. CONCLUSIONS: Genomic analyses of the reconstructed C. perfringens chromosome clearly support the occurrence of a pathogenic profile consisting of virulence genes already existing in the ancient strain, thereby reinforcing the notion of a very early speciation of this taxon towards a pathogenic phenotype. In contrast, the evolutionary development of P. veronii appears to be characterized by the acquisition of antibiotic resistance genes in more recent times as well as an evolution towards an ecological niche outside of the (human) gastrointestinal tract.201728095919
940510.9995Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance.202134410638
463220.9995Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux. BACKGROUND: Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP) oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. RESULTS: The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage), virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance) and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin). CONCLUSION: The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.200818844996
463730.9995What Differentiates Probiotic from Pathogenic Bacteria? The Genetic Mobility of Enterococcus faecium Offers New Molecular Insights. Enterococcus faecium is a lactic acid bacterium with applications in food engineering and nutrigenomics, including as starter cultures in fermented foods. To differentiate the E. faecium probiotic from pathogenic bacteria, physiological analyses are often used but they do not guarantee that a bacterial strain is not pathogenic. We report here new findings and an approach based on comparison of the genetic mobility of (1) probiotic, (2) pathogenic, and (3) nonpathogenic and non-probiotic strains, so as to differentiate probiotics, and inform their safe use. The region of the 16S ribosomal DNA (rDNA) genes of different E. faecium strains native to Pernambuco-Brazil was used with the GenBank query sequence. Complete genomes were selected and divided into three groups as noted above to identify the mobile genetic elements (MGEs) (transposase, integrase, conjugative transposon protein and phage) and antibiotic resistance genes (ARGs), and to undertake pan-genome analysis and multiple genome alignment. Differences in the number of MGEs were found in ARGs, in the presence and absence of the genes that differentiate E. faecium probiotics and pathogenic bacteria genetically. Our data suggest that genetic mobility appears to be informative in differentiating between probiotic and pathogenic strains. While the present findings are not necessarily applicable to all probiotics, they offer novel molecular insights to guide future research in nutrigenomics, clinical medicine, and food engineering on new ways to differentiate pathogenic from probiotic bacteria.202032762606
405040.9995Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases.202235740113
431050.9995Pathogenicity and drug resistance of animal streptococci responsible for human infections. Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.202133750514
422060.9995Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.202335694810
463470.9995Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health.202540202320
463380.9995Detection of Helicobacter pylori virulence-associated genes. Helicobacter pylori is an important human pathogen and persistent colonization of the human gastric mucosa can cause severe gastrointestinal diseases. The bacterium should not be considered as a uniform organism, but as a population of closely related and yet genetically diverse bacteria. Several genes of H. pylori (such as vacA and cagA) have been identified as being virulence-associated and may have important clinical and epidemiological implications. Assessment of virulence-associated genes of H. pylori should be included in clinical and epidemiological studies as well as therapeutic trials, in order to stratify between patient groups, harboring H. pylori strains with particular virulence genotypes. Molecular determination of antibiotic resistance will be especially useful for treatment studies. Together with our increasing knowledge about the human genome, typing of H. pylori will facilitate the management of gastroenterological pathologies.200111901834
422290.9995Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.202134076710
4344100.9995Phenetic Comparison of Prokaryotic Genomes Using k-mers. Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets.201728957508
4265110.9995Bacteriophages as vehicles of the resistome in cystic fibrosis. Environmental microbial communities and human microbiota represent a huge reservoir of mobilizable genes, the 'mobilome', including a pool of genes encoding antimicrobial resistance, the 'resistome'. Whole-genome sequencing of bacterial genomes from cystic fibrosis (CF) patients has demonstrated that bacteriophages contribute significantly to bacterial genome alterations, and metagenomic analysis of respiratory tract DNA viral communities has revealed the presence of genes encoding antimicrobial resistance in bacteriophages of CF patients. CF airways should now be considered as the site of complex microbiota, where bacteriophages are vehicles for the adaptation of bacteria to this specific environment and for the emergence and selection of multidrug-resistant bacteria with chimeric repertoires. As phages are already known to be mobilized during chronic infection of the lungs of patients with CF, it seems particularly important to improve the understanding of the mechanisms of phage induction to prevent the spread of virulence and/or antimicrobial resistance determinants within the CF population as well as in the community. Such a modern point of view may be a seminal reflection for clinical practice in the future since current antimicrobial therapy guidelines in the context of CF may lead to the emergence of genes encoding antimicrobial resistance.201121816766
4346120.9995Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. Streptococcus pneumoniae is a pathogen of global importance that frequently transfers genetic material between strains and on occasion across species boundaries. In an analysis of 1930 pneumococcal genotypes from six housekeeping genes and 94 genotypes from related species, we identified mosaic genotypes representing admixture between populations and found that these were significantly associated with resistance to several classes of antibiotics. We hypothesize that these observations result from a history of hyper-recombination, which means that these strains are more likely to acquire both divergent genetic material and resistance determinants. This could have consequences for the reemergence of drug resistance after pneumococcal vaccination and also for our understanding of diversification and speciation in recombinogenic bacteria.200919520963
4340130.9995Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes.202133010049
9663140.9995The structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. With their ability to integrate into the bacterial chromosome and thereby transfer virulence or drug-resistance genes across bacterial species, temperate phage play a key role in bacterial evolution. Thus, it is paramount to understand who infects whom to be able to predict the movement of DNA across the prokaryotic world and ultimately the emergence of novel (drug-resistant) pathogens. We empirically investigated lytic infection patterns among Vibrio spp. from distinct phylogenetic clades and their derived temperate phage. We found that across distantly related clades, infections occur preferentially within modules of the same clade. However, when the genetic distance of the host bacteria decreases, these clade-specific infections disappear. This indicates that the structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria.201830429242
9661150.9995Pangenomes of human gut microbiota uncover links between genetic diversity and stress response. The genetic diversity of the gut microbiota has a central role in host health. Here, we created pangenomes for 728 human gut prokaryotic species, quadrupling the genes of strain-specific genomes. Each of these species has a core set of a thousand genes, differing even between closely related species, and an accessory set of genes unique to the different strains. Functional analysis shows high strain variability associates with sporulation, whereas low variability is linked with antibiotic resistance. We further map the antibiotic resistome across the human gut population and find 237 cases of extreme resistance even to last-resort antibiotics, with a predominance among Enterobacteriaceae. Lastly, the presence of specific genes in the microbiota relates to host age and sex. Our study underscores the genetic complexity of the human gut microbiota, emphasizing its significant implications for host health. The pangenomes and antibiotic resistance map constitute a valuable resource for further research.202439353429
9406160.9995Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.201525784907
4255170.9995Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.201021133668
4377180.9995Pathogenicity and other genomic islands in plant pathogenic bacteria. SUMMARY Pathogenicity islands (PAIs) were first described in uropathogenic E. coli. They are now defined as regions of DNA that contain virulence genes and are present in the genome of pathogenic strains, but absent from or only rarely present in non-pathogenic variants of the same or related strains. Other features include a variable G+C content, distinct boundaries from the rest of the genome and the presence of genes related to mobile elements such as insertion sequences, integrases and transposases. Although PAIs have now been described in a wide range of both plant and animal pathogens it has become evident that the general features of PAIs are displayed by a number of regions of DNA with functions other than pathogenicity, such as symbiosis and antibiotic resistance, and the general term genomic islands has been adopted. This review will describe a range of genomic islands in plant pathogenic bacteria including those that carry effector genes, phytotoxins and the type III protein secretion cluster. The review will also consider some medically important bacteria in order to discuss the range, acquisition and stabilization of genomic islands.200320569400
4051190.9995The human microbiome harbors a diverse reservoir of antibiotic resistance genes. The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous culture-dependent methods. We showed that many resistance genes from cultured proteobacteria from human fecal samples are identical to resistance genes harbored by human pathogens, providing strong support for recent genetic exchange of this resistance machinery. In contrast, most of the resistance genes we identified with culture independent metagenomic sampling from the same samples were novel when compared to all known genes in public databases. While this clearly demonstrates that the antibiotic resistance reservoir of the large fraction of the human microbiome recalcitrant to culturing is severely under sampled, it may also suggest that barriers exist to lateral gene transfer between these bacteria and readily cultured human pathogens. If we hope to turn the tide against multidrug resistant infections, we must urgently commit to quantitatively characterizing the resistance reservoirs encoded by our diverse human microbiomes, with a particular focus on routes of exchange of these reservoirs with other microbial communities.201021178459