# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4345 | 0 | 1.0000 | Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology. | 2014 | 25101644 |
| 9888 | 1 | 0.9998 | Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally. | 2018 | 30081066 |
| 4628 | 2 | 0.9998 | Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage-resistant strains that can be overcome by the analysis of metadata provided by whole-genome sequencing. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strains belonging to the ST-2 clonal complex during a decade (Ab2000 vs. 2010): 9 from 2000 to 9 from 2010. The presence of genes putatively associated with phage resistance was detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defense systems but with unknown function, and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands in the 2000 strains and 32% in the 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems. A moderately higher presence of these genes in the strains of 2010 in comparison with those of 2000 was found, especially those related to the restriction-modification system and CRISPR-Cas system. The presence of these genes in genomic islands at a higher rate in the strains of 2010 compared with those of 2000 was also detected. Whole-genome sequencing and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in possible phage therapy. | 2021 | 35250902 |
| 4624 | 3 | 0.9998 | Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data. Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the 'distance to resistance'. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings. | 2017 | 28205635 |
| 4456 | 4 | 0.9998 | Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BACKGROUND: Predicting antibiotic resistance before it emerges at clinical settings constitutes a novel approach for preventing and fighting resistance of bacterial pathogens. To analyse the possibility that novel plasmid-encoded quinolone resistance determinants (Qnr) can emerge and disseminate among bacterial pathogens, we searched the presence of those elements in nearly 1000 bacterial genomes and metagenomes. RESULTS: We have found a number of novel potential qnr genes in the chromosomes of aquatic bacteria and in metagenomes from marine organisms. Functional studies of the Stenotrophomonas maltophilia Smqnr gene show that plasmid-encoded SmQnr confers quinolone resistance upon its expression in a heterologous host. CONCLUSION: Altogether, the data presented in our work support the notion that predictive studies on antibiotic resistance are feasible, using currently available information on bacterial genomes and with the aid of bioinformatic and functional tools. Our results confirm that aquatic bacteria can be the origin of plasmid-encoded Qnr, and highlight the potential role of S. maltophilia as a source of novel Qnr determinants. | 2008 | 18793450 |
| 5111 | 5 | 0.9998 | Antimicrobial Resistance Prediction for Gram-Negative Bacteria via Game Theory-Based Feature Evaluation. The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp. | 2019 | 31597945 |
| 4455 | 6 | 0.9998 | A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BACKGROUND: Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. RESULTS: In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. CONCLUSIONS: The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/. | 2012 | 23231464 |
| 6267 | 7 | 0.9998 | Beta-lactamase dependent and independent evolutionary paths to high-level ampicillin resistance. The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases. | 2024 | 38918379 |
| 4381 | 8 | 0.9998 | Specific Gene Loci of Clinical Pseudomonas putida Isolates. Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria. | 2016 | 26820467 |
| 6266 | 9 | 0.9998 | Bacterial gene loss as a mechanism for gain of antimicrobial resistance. Acquisition of exogenous DNA by pathogenic bacteria represents the basis for much of the acquired antimicrobial resistance in pathogenic bacteria. A more extreme mechanism to avoid the effect of an antibiotic is to delete the drug target, although this would be predicted to be rare since drug targets are often essential genes. Here, we review and discuss the description of a novel mechanism of resistance to the cephalosporin drug ceftazidime caused by loss of a penicillin-binding protein (PBP) in a Gram-negative bacillus (Burkholderia pseudomallei). This organism causes melioidosis across south-east Asia and northern Australia, and is usually treated with two or more weeks of ceftazidime followed by oral antibiotics for three to six months. Comparison of clinical isolates from six patients with melioidosis found initial ceftazidime-susceptible isolates and subsequent ceftazidime-resistant variants. The latter failed to grow on commonly used culture media, rendering these isolates difficult to detect in the diagnostic laboratory. Genomic analysis using pulsed-field gel electrophoresis and array based genomic hybridisation revealed a large-scale genomic deletion comprising 49 genes in the ceftazidime-resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a PBP 3 present within the region of genomic loss. This provides one explanation for ceftazidime treatment failure, and may be a frequent but undetected event in patients with melioidosis. | 2012 | 23022568 |
| 4344 | 10 | 0.9998 | Phenetic Comparison of Prokaryotic Genomes Using k-mers. Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. | 2017 | 28957508 |
| 4834 | 11 | 0.9997 | A retrospective view of beta-lactamases. The discovery of a penicillinase (later shown be a beta-lactamase) 50 years ago in Oxford came from the thought that the resistance of many Gram-negative bacteria to Fleming's penicillinase might be due to their production of a penicillin-destroying enzyme. The emergence of penicillinase-producing staphylococci in the early 1950s, particularly in hospitals, raised the question whether the medical value of penicillin would decline. The introduction of new semi-synthetic penicillins and cephalosporins in the 1960s began to reveal many beta-lactamases distinguishable by their different substrate profiles. In this period it was established that genes encoding beta-lactamases from Gram-negative bacilli could be carried from one organism to another on plasmids and also that penicillin inhibited a transpeptidase involved in bacterial cell wall synthesis. During the last two decades a number of these enzymes have been purified and the genes encoding them have been cloned. Much has now been learned, with the aid of powerful modern techniques, about their structures, their active sites, their relationship to penicillin-sensitive proteins in bacteria and to their likely evolution. Further knowledge may contribute to a more rational approach to chemotherapy in this area. Experience suggests that a need for new substances will continue. | 1991 | 1875234 |
| 9898 | 12 | 0.9997 | Fitness Cost Evolution of Natural Plasmids of Staphylococcus aureus. Plasmids have largely contributed to the spread of antimicrobial resistance genes among Staphylococcus strains. Knowledge about the fitness cost that plasmids confer on clinical staphylococcal isolates and the coevolutionary dynamics that drive plasmid maintenance is still scarce. In this study, we aimed to analyze the initial fitness cost of plasmids in the bacterial pathogen Staphylococcus aureus and the plasmid-host adaptations that occur over time. For that, we first designed a CRISPR (clustered regularly interspaced palindromic repeats)-based tool that enables the removal of native S. aureus plasmids and then transferred three different plasmids isolated from clinical S. aureus strains to the same-background clinical cured strain. One of the plasmids, pUR2940, obtained from a livestock-associated methicillin-resistant S. aureus (LA-MRSA) ST398 strain, imposed a significant fitness cost on both its native and the new host. Experimental evolution in a nonselective medium resulted in a high rate pUR2940 loss and selected for clones with an alleviated fitness cost in which compensatory adaptation occurred via deletion of a 12.8-kb plasmid fragment, contained between two ISSau10 insertion sequences and harboring several antimicrobial resistance genes. Overall, our results describe the relevance of plasmid-borne insertion sequences in plasmid rearrangement and maintenance and suggest the potential benefits of reducing the use of antibiotics both in animal and clinical settings for the loss of clinical multidrug resistance plasmids.IMPORTANCE Plasmids are major agents in the spread of antibiotic resistance genes among bacteria. How plasmids and their hosts coevolve to reduce the fitness cost associated with plasmid carriage when bacteria grow in an antibiotic-free environment is not well understood. Here, we investigated the cost and the genetic adaptations that occur during evolution in the absence of antibiotics when the bacterial pathogen Staphylococcus aureus acquires a new plasmid. Our results show the occurrence, at the end of evolution, of plasmid rearrangements mediated by insertion sequences that lead to the loss of antimicrobial resistance genes from the plasmid and an alleviated fitness cost. Our results thus highlight the probable benefits of reducing the use of antibiotics in management programs for the selection of S. aureus clones carrying plasmids that no longer confer resistance. | 2021 | 33622733 |
| 9897 | 13 | 0.9997 | The fitness connection of antibiotic resistance. More than three decades ago multidrug-resistant (MDR) clones of the pathogens: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Clostridioides difficile, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii have started to disseminate across wide geographical areas. A characteristic feature of all these MDR lineages is the carriage of some mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV which besides conferring resistance to fluoroquinolones are associated with a fitness benefit. Several lines of evidence strongly suggest that extra fitness conferred by these mutations facilitated the dissemination of the international MDR lineages. MDR pathogens require extra energy to cover the fitness cost conferred by the excess antibiotic resistance gene cargo. However, extra energy generated by upgraded metabolic activity was demonstrated to increase the uptake of antibiotics enhancing susceptibility. Accordingly, MDR bacteria need additional positive fitness schemes which, similarly to the QRDR advantage, will not compromise resistance. Some of these, not clone-specific effects are large genomes, the carriage of low-cost plasmids, the transfer of plasmid genes to the chromosome, the application of weak promoters in integrons and various techniques for the economic control of the activity of the integrase enzyme including a highly sophisticated system in A. baumannii. These impacts - among others - will confer a fitness advantage promoting the spread of MDR pathogens. However, even the potential of extra fitness generated by the combined effect of various schemes is not without limit and virulence-related genes or less relevant antibiotic resistance gene cargoes will often be sacrificed to permit the acquisition of high-priority resistance determinants. Accordingly major MDR clone strains are usually less virulent than susceptible isolates. In summary, a fitness approach to the research of antibiotic resistance is very useful since the fitness status of MDR bacteria seem to profoundly impact the capacity to disseminate in the healthcare setting. | 2025 | 40276228 |
| 4835 | 14 | 0.9997 | Genetic and biochemical basis of resistance of Enterobacteriaceae to beta-lactam antibiotics. Resistance to beta-lactam drugs is usually determined by genes mediating the production of beta-lactamases. These genes can be located on resistance plasmids or on the chromosome. Resistance to drugs which have been available for many years is mostly transposable. Although the origin of these genes is not known, it is possible to draw a hypothetical flow diagram of the evolution of resistance genes in general. The mechanism of resistance although mediated in Gram-negative bacteria mostly by beta-lactamases cannot be simply described as the hydrolytic function of the enzyme. It is a complex interaction involving the affinity of the drug for the target and the lactamase, the amount of drug in the periplasmic space, the amount of enzyme and the number of lethal target sites. Usually one of these factors is predominant. | 1986 | 3491818 |
| 9405 | 15 | 0.9997 | Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance. | 2021 | 34410638 |
| 4380 | 16 | 0.9997 | Comparative genome analysis of ciprofloxacin-resistant Pseudomonas aeruginosa reveals genes within newly identified high variability regions associated with drug resistance development. The alarming rise of ciprofloxacin-resistant Pseudomonas aeruginosa has been reported in several clinical studies. Though the mutation of resistance genes and their role in drug resistance has been researched, the process by which the bacterium acquires high-level resistance is still not well understood. How does the genomic evolution of P. aeruginosa affect resistance development? Could the exposure of antibiotics to the bacteria enrich genomic variants that lead to the development of resistance, and if so, how are these variants distributed through the genome? To answer these questions, we performed 454 pyrosequencing and a whole genome analysis both before and after exposure to ciprofloxacin. The comparative sequence data revealed 93 unique resistance strain variation sites, which included a mutation in the DNA gyrase subunit A gene. We generated variation-distribution maps comparing the wild and resistant types, and isolated 19 candidates from three discrete resistance-associated high variability regions that had available transposon mutants, to perform a ciprofloxacin exposure assay. Of these region candidates with transposon disruptions, 79% (15/19) showed a reduction in the ability to gain high-level resistance, suggesting that genes within these high variability regions might enrich for certain functions associated with resistance development. | 2013 | 23808957 |
| 3808 | 17 | 0.9997 | Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance. | 2017 | 27873258 |
| 9900 | 18 | 0.9997 | On the origin of plasmid-borne, extended-spectrum, antibiotic resistance mutations in bacteria. Many antibiotic resistance mutations arise in pathogenic bacteria that harbor plasmids (R-plasmids). Resistance to third generation cephalosporins, for instance, largely occurs by one or more point mutations in plasmid bla genes that expand the resistance spectrum of beta-lactamases. Here I review relevant evidence underlying the worldwide emergence of extended spectrum beta-lactamases (ESBLs). The conclusion reached is that the origin of these resistance-conferring mutations cannot be explained by a series of single point mutation and selection events. Instead, highly advantageous stochastic processes might exist that generate alterations in the sequence or the conformation of particular regions in chromosomal or plasmid genomes such as bla, i.e., recombination or mutation. Several explanations for the origin of ESBLs are reviewed but direct experimental evidence to support or to invalidate them is still lacking. The cellular conditions under which ESBLs arise are unknown; however, involvement of nutritional stresses inside natural animal hosts and of plasmid conjugal functions appear likely. | 1998 | 9533872 |
| 4828 | 19 | 0.9997 | Generating Transposon Insertion Libraries in Gram-Negative Bacteria for High-Throughput Sequencing. Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections. | 2020 | 32716393 |