# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4315 | 0 | 1.0000 | Problems and dilemmas of antimicrobial resistance. An important obstacle to the long-term efficacy of an antimicrobial agent is the appearance and spread of resistance to the agent. The fact that many antimicrobials are produced by microorganisms in nature may provide long-term selective pressure for the emergence of resistance in antibiotic-producing as well as -nonproducing organisms. Indeed, the rapidity with which many resistances have appeared after the introduction of a new antibiotic suggests that these resistance genes were already present somewhere in nature prior to clinical use. In the hospital setting, the most recent worrisome resistance traits to emerge include plasmid-mediated resistance to imipenem and to third-generation cephalosporins among nosocomial gram-negative bacteria, and the acquisition of resistance to vancomycin by enterococci. Methicillin-resistant staphylococci continue to be a problem and are increasingly resistant to numerous other agents such as rifampin and the newer fluoroquinolones. The most important resistances seen in community-acquired organisms include beta-lactam resistance in pneumococci and combined ampicillin and chloramphenicol resistance in Haemophilus influenzae. Shigellae resistant to essentially all commonly used oral agents are also a problem, particularly in developing countries. No end is in sight to the problem of antimicrobial resistance, and thus new strategies to prevent infections and control resistant organisms continue to be necessary. | 1992 | 1480504 |
| 4318 | 1 | 0.9999 | Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance. | 1996 | 10879217 |
| 4317 | 2 | 0.9999 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |
| 4316 | 3 | 0.9999 | Why do antimicrobial agents become ineffectual? Antibiotic resistance has evolved over the past 50 years from a merely microbiological curiosity to a serious medical problem in hospitals all over the world. Resistance has been reported in almost all species of gram-positive and -negative bacteria to various classes of antibiotics including recently developed ones. Bacteria acquire resistance by reducing permeability and intracellular accumulation, by alteration of targets of antibiotic action, and by enzymatic modification of antibiotics. Inappropriate use of an antibiotic selects resistant strains much more frequently. Once resistant bacteria has emerged, the resistance can be transferred to other bacteria by various mechanisms, resulting in multiresistant strains. MRSA is one of the typical multiresistant nosocomial pathogens. A study of the PFGE pattern of endonuclease-digested chromosomal DNA showed that MRSA of a few clones were disseminated among newborns in the NICU of a Japanese hospital. In this regard, it is important to choose appropriate antibiotics and then after some time, to change to other classes to reduce the selection of resistant strains. Since the development of epoch-making new antibiotics is not expected in the near future, it has become very important to use existing antibiotics prudently based on mechanisms of antibiotic action and bacterial resistance. Control of nosocomial infection is also very important to reduce further spread of resistant bacteria. | 1998 | 10097676 |
| 4797 | 4 | 0.9999 | Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination. | 1998 | 9777517 |
| 4312 | 5 | 0.9998 | Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella. | 2006 | 16716631 |
| 4326 | 6 | 0.9998 | Antibiotic resistance in oral/respiratory bacteria. In the last 20 years, changes in world technology have occurred which have allowed for the rapid transport of people, food, and goods. Unfortunately, antibiotic residues and antibiotic-resistant bacteria have been transported as well. Over the past 20 years, the rise in antibiotic-resistant gene carriage in virtually every species of bacteria, not just oral/respiratory bacteria, has been documented. In this review, the main mechanisms of resistance to the important antibiotics used for treatment of disease caused by oral/respiratory bacteria--including beta-lactams, tetracycline, and metronidazole--are discussed in detail. Mechanisms of resistance for macrolides, lincosamides, streptogramins, trimethoprim, sulfonamides, aminoglycosides, and chloramphenicol are also discussed, along with the possible role that mercury resistance may play in the bacterial ecology. | 1998 | 9825225 |
| 4313 | 7 | 0.9998 | Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review. | 2008 | 18311156 |
| 4796 | 8 | 0.9998 | The specter of glycopeptide resistance: current trends and future considerations. Two glycopeptide antibiotics, vancomycin and teicoplanin, are currently available for clinical use in various parts of the world, whereas a third, avoparcin, is available for use in agricultural applications and in veterinary medicine in some countries. Because of their outstanding activity against a broad spectrum of gram-positive bacteria, vancomycin and teicoplanin have often been considered the drugs of "last resort" for serious infections due to drug-resistant gram-positive pathogens. Glycopeptides had been in clinical use for almost 30 years before high-level resistance, first reported in enterococcal species, emerged. More recently, there have been disturbing reports of low- and intermediate-level resistance to vancomycin in strains of Staphylococcus aureus. A review of earlier reports reveals, however, that S. aureus strains with reduced susceptibility to glycopeptides were first identified >40 years ago. Such strains may occur in nature or may have developed low-level mutational resistance in response to the selection pressure of glycopeptide therapy. Of considerably greater concern is the possibility that vancomycin resistance genes found in enterococci may be transferred to more virulent organisms such as staphylococci or Streptococcus pneumoniae. | 1998 | 9684651 |
| 4795 | 9 | 0.9998 | Epidemiology and mechanisms of glycopeptide resistance in enterococci. PURPOSE OF REVIEW: This review updates epidemiologic trends and our understanding of glycopeptide resistance in enterococci. RECENT FINDINGS: Colonization and infection rates with vancomycin resistant enterococci continue to increase throughout the world while factors contributing to this rise continue to be defined. While no interventions exist to eradicate colonization, infection control procedures are cost effective and decrease the prevalence of vancomycin resistant enterococcal colonization and infection. New molecular methods show great promise in strengthening our ability to detect colonization with these bacteria. Furthermore, our understanding of the origin of vancomycin resistant enterococci continues to grow. Paenibacillus species found in soil have been found to carry homologues of vanA-associated glycopeptide resistance genes found in enterococci. Also, additional evidence supports previous data that VanB-associated resistance may have been horizontally transferred from gastrointestinal tract bacteria to enterococci. Finally, glycopeptide resistance has been transferred to methicillin-resistant Staphylococcus aureus in clinical practice on several occasions. SUMMARY: The prevalence of vancomycin resistant enterococci will likely continue to increase. Implementation of infection control strategies, in conjunction with deployment of advanced technologies for detection of vancomycin resistant enterococci, may curb this rise. The emergence of vancomycin resistant S. aureus is of concern. | 2005 | 16258324 |
| 9798 | 10 | 0.9998 | Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Antimicrobial resistance in bacteria is frightening, especially resistance in Gram-negative Bacteria (GNB). In 2017, the World Health Organization (WHO) published a list of 12 bacteria that represent a threat to human health, and among these, a majority of GNB. Antibiotic resistance is a complex and relatively old phenomenon that is the consequence of several factors. The first factor is the vertiginous drop in research and development of new antibacterials. In fact, many companies simply stop this R&D activity. The finding is simple: there are enough antibiotics to treat the different types of infection that clinicians face. The second factor is the appearance and spread of resistant or even multidrug-resistant bacteria. For a long time, this situation remained rather confidential, almost anecdotal. It was not until the end of the 1980s that awareness emerged. It was the time of Vancomycin-Resistance Enterococci (VRE), and the threat of Vancomycin-Resistant MRSA (Methicillin-Resistant Staphylococcus aureus). After this, there has been renewed interest but only in anti-Gram positive antibacterials. Today, the threat is GNB, and we have no new molecules with innovative mechanism of action to fight effectively against these bugs. However, the war against antimicrobial resistance is not lost. We must continue the fight, which requires a better knowledge of the mechanisms of action of anti-infectious agents and concomitantly the mechanisms of resistance of infectious agents. | 2019 | 31470632 |
| 4314 | 11 | 0.9998 | Cephalosporin resistance among animal-associated Enterobacteria: a current perspective. Beta-lactam antimicrobials are an important class of drugs used for the treatment of infection. Resistance can arise by several mechanisms, including the acquisition of genes encoding beta-lactamases from other bacteria, alterations in cell membrane permeability and over expression of endogenous beta-lactamases. The acquisition of beta-lactamase resistance genes by both Salmonella and Escherichia coli appears to be on the rise, which may pose potential problems for the treatment of infections in both human and animal medicine. The prudent use of clinically important antimicrobials is therefore critical to maintain their effectiveness. Where possible, the use of newer generation cephalosporins should be limited in veterinary medicine. | 2005 | 15954857 |
| 4834 | 12 | 0.9998 | A retrospective view of beta-lactamases. The discovery of a penicillinase (later shown be a beta-lactamase) 50 years ago in Oxford came from the thought that the resistance of many Gram-negative bacteria to Fleming's penicillinase might be due to their production of a penicillin-destroying enzyme. The emergence of penicillinase-producing staphylococci in the early 1950s, particularly in hospitals, raised the question whether the medical value of penicillin would decline. The introduction of new semi-synthetic penicillins and cephalosporins in the 1960s began to reveal many beta-lactamases distinguishable by their different substrate profiles. In this period it was established that genes encoding beta-lactamases from Gram-negative bacilli could be carried from one organism to another on plasmids and also that penicillin inhibited a transpeptidase involved in bacterial cell wall synthesis. During the last two decades a number of these enzymes have been purified and the genes encoding them have been cloned. Much has now been learned, with the aid of powerful modern techniques, about their structures, their active sites, their relationship to penicillin-sensitive proteins in bacteria and to their likely evolution. Further knowledge may contribute to a more rational approach to chemotherapy in this area. Experience suggests that a need for new substances will continue. | 1991 | 1875234 |
| 9800 | 13 | 0.9998 | Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance. | 1994 | 7723996 |
| 4858 | 14 | 0.9998 | Successful interventions for gram-negative resistance to extended-spectrum beta-lactam antiobiotics. Antibiotic resistance among nosocomial pathogens in this country's hospitals adds significantly to patient morbidity and mortality, and the cost of health care. Optimism for identifying antimicrobial agents that would "solve the problem" of resistance has been replaced by a much more guarded and realistic view of the battle between humans and pathogenic microorganisms. Efforts now are more appropriately directed toward limiting, rather than completely eliminating, resistance, generally by either infection control or antibiotic control measures, and sometime combinations of the two. Methicillin-oxacillin resistance in Staphylococcus aureus (MRSA) results from the expression of an acquired penicillin-binding protein (PBP 2a) that is not transferable in vitro. In most hospitals, even those with high percentages of MRSA, relatively few resistant clones are identified, suggesting transmission of individual strains throughout the hospital population. Because person-to-person spread is so important in transmission of MRSA, strategies aimed at preventing transmission of the resistant strains are remarkably effective when strictly enforced. Ceftazidime resistance in Enterobacteriaceae results from point mutations within genes that encode widely prevalent and often transferable plasmid-mediated enzymes. In addition, mutations of these genes that allow hydrolysis of cephalosporins usually result in decreased activity against other drugs, including the penicillins and beta-lactamase inhibitors. Effective measures to control ceftazidime-resistant Enterobacteriaceae have as their cornerstone limiting administration of antibiotics that select for the emergence and spread of these mutations, especially ceftazidime. The importance of infection-control techniques in limiting the prevalence of ceftazidime-resistant Enterobacteriaceae is less well established. Methods that are informed by a detailed understanding of the molecular mechanisms of resistance and resistance spread offer the best hope for limiting dissemination of antibiotic-resistant bacteria in a cost-effective manner. | 1999 | 10456609 |
| 4857 | 15 | 0.9998 | The emergence of bacterial resistance and its influence on empiric therapy. The discovery of antimicrobial agents had a major impact on the rate of survival from infections. However, the changing patterns of antimicrobial resistance caused a demand for new antibacterial agents. Within a few years of the introduction of penicillin, the majority of staphylococci were resistant to that drug. In the 1960s the production of the semisynthetic penicillins provided an answer to the problem of staphylococcal resistance. In the early 1960s most Escherichia coli were susceptible to the new beta-lactam antibiotic ampicillin; by the end of that decade, plasmid-mediated beta-lactamase resistance was found in 30%-50% of hospital-acquired E. coli. Use of certain agents resulted in the selection of bacteria, such as Klebsiella, that are intrinsically resistant to ampicillin. The original cephalosporins were stable to beta-lactamase, but the use of these agents was in part responsible for the appearance of infections due to Enterobacter species, Citrobacter species, and Pseudomonas aeruginosa. These bacteria, as well as Serratia, were resistant to many of the available beta-lactam agents. Aminoglycosides initially provided excellent activity against most of the facultative gram-negative bacteria. However, the widespread dissemination of the genes that cause production of the aminoglycoside-inactivating enzymes altered the use of those agents. Clearly, the evolution of bacterial resistance has altered the prescribing patterns for antimicrobial agents. Knowledge that beta-lactam resistance to ampicillin or cephalothin is prevalent is causing physicians to select as empiric therapy either a combination of two or more agents or agents to which resistance is uncommon. The new cephalosporins offer a broad spectrum of anti-bacterial activity coupled with low toxicity. However, physicians must closely follow the changing ecology of bacteria when these agents are used, because cephalosporins can also select bacteria resistant to themselves and thereby abolish their value as empiric therapy. | 1983 | 6342103 |
| 4294 | 16 | 0.9998 | Anaerobic infections: update on treatment considerations. Anaerobic bacteria are the predominant indigenous flora of humans and, as a result, play an important role in infections, some of which are serious with a high mortality rate. These opportunistic pathogens are frequently missed in cultures of clinical samples because of shortcomings in collection and transport procedures as well as lack of isolation and susceptibility testing of anaerobes in many clinical microbiology laboratories. Correlation of clinical failures with known antibacterial resistance of anaerobic bacteria is seldom possible. Changes in resistance over time, and the discovery and characterization of resistance determinants in anaerobic bacteria, has increased recognition of problems in empirical treatment and has even resulted in changes in treatment guidelines. This review discusses the role of anaerobic bacteria in the normal flora of humans, their involvement in different mixed infections, developments in antibacterial resistance of the most frequent anaerobic pathogens and possible new treatment options. | 2010 | 20426496 |
| 4057 | 17 | 0.9998 | A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. Antibiotic resistance is a growing problem, affecting microorganisms found both in hospitals and in the community. In most patients, resistant organisms arise by transmission of already resistant microorganisms from another person, rather than arising by mutation in the index patient. Antibiotic resistance genes are often borne on plasmids or transposons on which they may be spread rapidly to other organisms in the same species or in other species. Plasmids and transposons readily pick up genes for resistance to other antibiotics or nonantibiotic agents ("linked resistance"). Control of the spread of antibiotic resistance may require limitation of the usage of other agents with linked resistance as well as of the antibiotics of primary interest. A model is described for the analysis of the transmission of antibiotic-resistant enteric bacteria in the ICU. The model deals with the baseline level of antibiotic resistance in the "source" patient, the effect of antibiotics in augmenting the concentration of resistant organisms in that patient, the role of patient-to-patient contact, and factors which may influence the "colonizability" of the recipient patient. Possible measures to reduce the spread of antibiotic resistance are discussed. It is hoped that the model may serve to focus discussion on some key ingredients of the transmission cycle. | 1996 | 8856750 |
| 4237 | 18 | 0.9998 | Antibiotics: action and resistance in gram-negative bacteria. Therapeutic control of beta-lactamase-producing bacteria has been a major clinical problem in the past 40 years. Gram-negative bacteria are most often resistant to antibiotics as a result of the acquisition of resistant genes or gene mutation. Studies have shown that newly developed antibiotics will shortly fail to be active against the bacteria because of the emergence of resistance. Some resistant bacteria have been found to exist even before the antibiotic was developed. Selective pressure by the antibiotic is, therefore, one of the major factors to explain the increase of resistance. Recently, numerous resistant mechanisms that differ in their substrate profiles have been described at increasing frequencies. The inappropriate use of new antibiotics with extended spectrum further complicated the problem. Because resistance is a largely unavoidable consequence of widespread use of antibiotics, it is crucial that the use of drugs is selective by exercising prudent judgment and not excessive. The actual prevalence of resistance should be continuously monitored each year. Caution should be paid to the direct extrapolation of study results from other geographic areas, because the local prevalence of resistance is unlikely to be identical to those reported elsewhere. The impact of resistance to an antibiotic and its specific mechanisms, including transmissibility, should also be carefully studied. Such information may help in designing strategies for maximizing the therapeutic usefulness of drugs and minimizing the emergence of resistance. | 2002 | 11950113 |
| 9791 | 19 | 0.9998 | Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control. | 2022 | 36042694 |