# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4312 | 0 | 1.0000 | Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella. | 2006 | 16716631 |
| 4240 | 1 | 0.9999 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 4341 | 2 | 0.9999 | Antimicrobial Resistance in Nontyphoidal Salmonella. Non-typhoidal Salmonella is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal Salmonella arises in large part because of antibiotic use in animal husbandry. Tracking resistance in Salmonella is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in Salmonella and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent Salmonella antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant Salmonella, the specific types of resistance genes involved, and information on how resistance spreads. | 2018 | 30027887 |
| 4317 | 3 | 0.9999 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |
| 4313 | 4 | 0.9999 | Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review. | 2008 | 18311156 |
| 4340 | 5 | 0.9999 | Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes. | 2021 | 33010049 |
| 4326 | 6 | 0.9999 | Antibiotic resistance in oral/respiratory bacteria. In the last 20 years, changes in world technology have occurred which have allowed for the rapid transport of people, food, and goods. Unfortunately, antibiotic residues and antibiotic-resistant bacteria have been transported as well. Over the past 20 years, the rise in antibiotic-resistant gene carriage in virtually every species of bacteria, not just oral/respiratory bacteria, has been documented. In this review, the main mechanisms of resistance to the important antibiotics used for treatment of disease caused by oral/respiratory bacteria--including beta-lactams, tetracycline, and metronidazole--are discussed in detail. Mechanisms of resistance for macrolides, lincosamides, streptogramins, trimethoprim, sulfonamides, aminoglycosides, and chloramphenicol are also discussed, along with the possible role that mercury resistance may play in the bacterial ecology. | 1998 | 9825225 |
| 4241 | 7 | 0.9999 | Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified. | 1993 | 8212509 |
| 4314 | 8 | 0.9999 | Cephalosporin resistance among animal-associated Enterobacteria: a current perspective. Beta-lactam antimicrobials are an important class of drugs used for the treatment of infection. Resistance can arise by several mechanisms, including the acquisition of genes encoding beta-lactamases from other bacteria, alterations in cell membrane permeability and over expression of endogenous beta-lactamases. The acquisition of beta-lactamase resistance genes by both Salmonella and Escherichia coli appears to be on the rise, which may pose potential problems for the treatment of infections in both human and animal medicine. The prudent use of clinically important antimicrobials is therefore critical to maintain their effectiveness. Where possible, the use of newer generation cephalosporins should be limited in veterinary medicine. | 2005 | 15954857 |
| 4332 | 9 | 0.9999 | Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. | 2017 | 28258227 |
| 9805 | 10 | 0.9999 | Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation. | 2022 | 36561977 |
| 4318 | 11 | 0.9999 | Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance. | 1996 | 10879217 |
| 4797 | 12 | 0.9999 | Antibiotic resistance among clinically important gram-positive bacteria in the UK. The resistance of bacteria to antibiotics, particularly those used for first-line therapy, is an increasing cause for concern. In the UK, the prevalence of resistance to methicillin and mupirocin in Staphylococcus aureus, and to penicillin and macrolides in Streptococcus pneumoniae, appear to be increasing. There has also been an increase in the number of hospitals where glycopeptide-resistant enterococci are known to have been isolated. The increases in methicillin-resistant S. aureus and glycopeptide-resistant enterococci are due, in part, to the inter-hospital spread of epidemic strains. Although new quinolones and streptogramins with activity against Gram-positive bacteria (including strains resistant to currently available agents) are under development, there is no reason to believe that resistance to these agents will not emerge. The control of resistance in Gram-positive bacteria will require a multi-faceted approach, including continued and improved surveillance, a reduction in the unnecessary use of antibiotics, and the application of other strategies such as vaccination. | 1998 | 9777517 |
| 4333 | 13 | 0.9999 | New trends in regulatory rules and surveillance of antimicrobial resistance in bacteria of animal origin. Since the introduction in the 1940s of antibiotics as drugs against bacterial infections in human and then veterinary medicine, two major events have caused a shift in the antibiotherapy era: (1) the emergence of resistant bacteria and (2) the awareness of the limits of new drug development. It rapidly became urgent to set up measures in order to evaluate the importance of resistant bacteria and their origin as well as to limit the dissemination of resistant vectors (bacteria and bacterial genes). This led to the establishment of guidelines and regulatory rules necessary for risk assessment and clearly dependent upon monitoring and research organisations. At a veterinary level, the possible dissemination of multiresistant bacteria from animals to humans, through feeding, urged various national European and international institutions to give general recommendations to monitor and contain the emergence and diffusion of resistant strains. This paper gives an overview of the evolution of regulatory rules and monitoring systems dealing with multiresistant bacteria. | 2001 | 11432426 |
| 4142 | 14 | 0.9999 | Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms. | 2018 | 29916344 |
| 4391 | 15 | 0.9999 | 'To be, or not to be'-The dilemma of 'silent' antimicrobial resistance genes in bacteria. Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes-genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health. | 2022 | 35882476 |
| 4119 | 16 | 0.9999 | How to modify conditions limiting resistance in bacteria in animals and other reservoirs. Antimicrobial agents in veterinary medicine are used for three purposes: therapy, prophylaxis, and nutrition. The major public health risk is that selection pressure leads to an increase in the pool of resistance genes. Since 1987, the nutritional use of antimicrobials in Europe has been regulated by a council directive, which demands special investigations into the potential of antimicrobials to increase rates of drug resistance. However, the prophylactic and therapeutic use of antimicrobials has sometimes led to the emergence of resistant bacteria. For example, the selective effect of the prophylactic use of gentamicin and the therapeutic use of quinolones led to the emergence of resistant salmonellae. To prevent the spread of resistant microorganisms from animals to humans, it should be recognized that antibiotics are not suitable as a compensation for poor hygiene standards or for the eradication of a pathogen from a certain environment. They should be used only by doctors or veterinarians. | 1997 | 8994793 |
| 4336 | 17 | 0.9999 | Antibiotic Resistance in Bacteria-A Review. A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as "foodborne pathoges" isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria. | 2022 | 36009947 |
| 4422 | 18 | 0.9999 | Diversity among multidrug-resistant enterococci. Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge. | 1998 | 9452397 |
| 4145 | 19 | 0.9998 | Antimicrobial Resistance among Staphylococci of Animal Origin. Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin. | 2018 | 29992898 |