# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4306 | 0 | 1.0000 | The correlation study on antimicrobial resistance and biofilm related genes in clinical isolates of Acinetobacter baumannii. In recent years, the proportion of nosocomial infections caused by Acinetobacter baumannii (Ab) strains has increased significantly, and its resistance to antibiotics is rising. The resistance mechanisms of Ab are complex, which include the integron formation, inactivating or deactivating enzyme, outer membrane permeability, biofilm formation, drug exocytosis mechanism and so on. The biofilm formation by bacteria leads to high resistance and immune evasion ability. The aim of this study is to investigate the resistance and distribution patterns of Ab isolates, and the biofilm formation related genes in Ab isolates in our hospital. | 2013 | 24021047 |
| 4816 | 1 | 0.9998 | Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs. | 2024 | 38489041 |
| 9757 | 2 | 0.9998 | Effects of different mechanisms on antimicrobial resistance in Pseudomonas aeruginosa: a strategic system for evaluating antibiotics against gram-negative bacteria. Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using Klebsiella pneumoniae and Acinetobacter baumannii. However, it lacked resistance mechanisms specifically expressed only in Pseudomonas species. In this study, we constructed this system using Pseudomonas aeruginosa. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible P. aeruginosa strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from P. aeruginosa KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in P. aeruginosa. Building upon our previous studies on K. pneumoniae and A. baumannii, this strategic system, including a P. aeruginosa panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for P. aeruginosa was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance. | 2025 | 40042282 |
| 4817 | 3 | 0.9997 | Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates. | 2019 | 30142035 |
| 6279 | 4 | 0.9997 | Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections. | 2017 | 27916419 |
| 4832 | 5 | 0.9997 | Antibiotic resistance of Pseudomonas species. Pseudomonas species are highly versatile organisms with genetic and physiologic capabilities that allow them to flourish in environments hostile to most pathogenic bacteria. Within the lung of the patient with cystic fibrosis, exposed to a number of antimicrobial agents, highly resistant clones of Pseudomonas are selected. These may have acquired plasmid-mediated genes encoding a variety of beta-lactamases or aminoglycoside modifying enzymes. Frequently these resistance determinants are on transposable elements, facilitating their dissemination among the population of bacteria. Mutations in chromosomal genes can also occur, resulting in constitutive expression of normally repressed enzymes, such as the chromosomal cephalosporinase of Pseudomonas aeruginosa or Pseudomonas cepacia. These enzymes may confer resistance to the expanded-spectrum beta-lactam drugs. Decreased cellular permeability to the beta-lactams and the aminoglycosides also results in clinically significant antibiotic resistance. The development of new drugs with anti-Pseudomonas activity, beta-lactam agents and the quinolones, has improved the potential for effective chemotherapy but has not surpassed the potential of the organisms to develop resistance. | 1986 | 3701534 |
| 4625 | 6 | 0.9997 | Resistome analysis of bloodstream infection bacterial genomes reveals a specific set of proteins involved in antibiotic resistance and drug efflux. Bacterial resistance to antibiotics is a global public health problem. Its association with bloodstream infections is even more severe and may easily evolve to sepsis. To improve our response to these bacteria, it is essential to gather thorough knowledge on the main pathogens along with the main mechanisms of resistance they carry. In this paper, we performed a large meta-analysis of 3872 bacterial genomes isolated from blood samples, from which we identified 71 745 antibiotic resistance genes (ARGs). Taxonomic analysis showed that Proteobacteria and Firmicutes phyla, and the species Klebsiella pneumoniae and Staphylococcus aureus were the most represented. Comparison of ARGs with the Resfams database showed that the main mechanism of antibiotic resistance is mediated by efflux pumps. Clustering analysis between resistome of blood and soil-isolated bacteria showed that there is low identity between transport and efflux proteins between bacteria from these environments. Furthermore, a correlation analysis among all features showed that K. pneumoniae and S. aureus formed two well-defined clusters related to the resistance mechanisms, proteins and antibiotics. A retrospective analysis has shown that the average number of ARGs per genome has gradually increased. The results demonstrate the importance of comprehensive studies to understand the antibiotic resistance phenomenon. | 2020 | 33575606 |
| 4829 | 7 | 0.9997 | Diversity of the mechanisms of resistance to beta-lactam antibiotics. The sensitivity of a bacterium to beta-lactam antibiotics depends upon the interplay between 3 independent factors: the sensitivity of the essential penicillin-binding enzyme(s), the quantity and properties of the beta-lactamase(s) and the diffusion barrier that the outer-membrane of Gram-negative bacteria can represent. Those three factors can be modified by mutations or by the horizontal transfer of genes or portions of genes. | 1991 | 1961980 |
| 4728 | 8 | 0.9997 | Antibiotic Resistance Profile, Outer Membrane Proteins, Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are Potential Pathogens Compared to Environmental Isolates. Outer membrane proteins (OMPs) of gram-negative bacteria play an important role in mediating antibacterial resistance, bacterial virulence and thus affect pathogenic ability of the bacteria. Over the years, prevalence of environmental antibiotic resistant organisms, their transmission to clinics and ability to transfer resistance genes, have been studied extensively. Nevertheless, how successful environmental bacteria can be in establishing as pathogenic bacteria under clinical setting, is less addressed. In the present study, we utilized an integrated approach of investigating the antibiotic resistance profile, presence of outer membrane proteins and virulence factors to understand extent of threat posed due to multidrug resistant environmental Enterobacter isolates. Also, we investigated clinical Enterobacter isolates and compared the results thereof. Results of the study showed that multidrug resistant environmental Enterobacter isolates lacked OmpC, lacked cell invasion abilities and exhibited low reactive oxygen species (ROS) production in neutrophils. In contrast, clinical isolates possessed OmpF, exhibited high invasive and adhesive property and produced higher amounts of ROS in neutrophils. These attributes indicated limited pathogenic potential of environmental Enterobacter isolates. Informations obtained from whole genome sequence of two representative bacterial isolates from environment (DL4.3) and clinical sources (EspIMS6) corroborated well with the observed results. Findings of the present study are significant as it highlights limited fitness of multidrug resistant environmental Enterobacter isolates. | 2020 | 32154188 |
| 9909 | 9 | 0.9997 | Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. | 2015 | 26042091 |
| 4647 | 10 | 0.9997 | Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection. | 2016 | 26872140 |
| 9756 | 11 | 0.9997 | Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria. | 2009 | 19332674 |
| 4408 | 12 | 0.9997 | Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of surviving in natural niches, and in the hospital environment could also be associated with the efflux pump mechanisms. Mechanisms of efflux universally appear in all cells (eukaryotic and prokaryotic) and play the physiological important role. In prokaryote, the main functions are evasion of such naturally produced molecules, removal of metabolic products and toxins. These pumps could also be involved in an early stage of infection, such as adhesion to host cells and the colonization. Importantly, they remove commonly used antibiotics from the cell in therapy of infections caused by these bacteria. Efflux pumps exemplify a unique phenomenon in drug resistance: a single mechanism causing resistance against several different classes of antibiotics. In Acinetobacter baumannii, the AdeABC efflux pump, a member of the resistance-nodulation-cell division family (RND), has been well characterized. Aminoglicosides, tetracyclines, erythromycin, chloramphenicol, trimethoprim, fluoroquinolones, some beta-lactams, and also recently tigecycline, were found to be substrates for this pump. Drugs, as substrates for the AdeABC pump, can increase the expression of the AdeABC genes, leading to multidrug resistance (MDR). From this reason, treatment failure and death caused by Acinetobacter baumannii infections or underlying diseases are common. Because the AdeABC pump is widespread in Acinetobacter baumannii, similarly to other pumps in Gram-negative and Gram-positive bacteria, exists a need of searching a new therapeutic solutions. Specific efflux inhibitors of pumps (EPIs), including AdeABC inhibitors, could be suppress the activity of pumps and restore the sensitivity of such important bacteria as Acinetobacter baumannii to commonly used antibiotic. | 2008 | 19056528 |
| 6275 | 13 | 0.9997 | Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Fosfomycin has been used for the treatment of infections due to susceptible and multidrug-resistant (MDR) bacteria. It inhibits bacterial cell wall synthesis through a unique mechanism of action at a step prior to that inhibited by β-lactams. Fosfomycin enters the bacterium through membrane channels/transporters and inhibits MurA, which initiates peptidoglycan (PG) biosynthesis of the bacterial cell wall. Several bacteria display inherent resistance to fosfomycin mainly through MurA mutations. Acquired resistance involves, in order of decreasing frequency, modifications of membrane transporters that prevent fosfomycin from entering the bacterial cell, acquisition of plasmid-encoded genes that inactivate fosfomycin, and MurA mutations. Fosfomycin resistance develops readily in vitro but less so in vivo. Mutation frequency is higher among Pseudomonas aeruginosa and Klebsiella spp. compared with Escherichia coli and is associated with fosfomycin concentration. Mutations in cAMP regulators, fosfomycin transporters and MurA seem to be associated with higher biological cost in Enterobacteriaceae but not in Pseudomonas spp. The contribution of fosfomycin inactivating enzymes in emergence and spread of fosfomycin resistance currently seems low-to-moderate, but their presence in transferable plasmids may potentially provide the best means for the spread of fosfomycin resistance in the future. Their co-existence with genes conferring resistance to other antibiotic classes may increase the emergence of MDR strains. Although susceptibility rates vary, rates seem to increase in settings with higher fosfomycin use and among multidrug-resistant pathogens. | 2019 | 30268576 |
| 4727 | 14 | 0.9997 | Biodegradation of plastics and pesticides by soil bacteria in Bangladesh: Insights into antibiotic resistance and potential therapeutic targets. Soil bacteria exhibit varying degrees of tolerance to different concentrations of pesticides and plastics, and some possess the ability to degrade them, which is crucial for bioremediation. However, the multidrug-resistant properties of these bacteria pose challenges for their potential applications. Hence, this study aims to separate and characterize plastics and pesticide-degrading bacteria fromnon-contaminated and contaminated sites in Bangladesh and evaluate their antibiotic-resistant patterns to identify safety issues and discover promising therapeutic targets for combating multidrug-resistant infections. In the current study, a total of 90 soil samples were collected from different agricultural and dumped sites of Bangladesh, and bacterial isolates were screened for pesticides and plastics-degrading capabilities. Antibiotic sensitivity patterns of the potential isolates were evaluated using 16 different antibiotics. Biochemical, molecular, and genomic analyses were conducted to characterize the bacteria and identify antimicrobial resistance (AMR) genes. Our study screened out 122 plastic and 60 pesticide-tolerant bacterial isolates. Among them, 3 pesticide and 3 plastic-degrading isolates were found to be more promising and identified as Acinetobacter baumannii with pesticide-degrading capabilities from non-contaminated sites, and Klebsiella pneumoniae with plastic-degrading capabilities from contaminated sites. Antibiotic sensitivity test exhibited that most of the isolates were resistance to commonly used antimicrobials. The genomics and proteomics analysis uncovered the efflux pump-related genes responsible for the resistant mechanism and highlighted the involvement of genes that respond to antibiotics and transmembrane transport activities. Phylogenetic analysis confirmed the conservation of 2 common resistance genes adeF and gyrA, across diverse multidrug-resistant pathogens. Therefore, targeting conserved genes adeF and gyrA, to disrupt resistance mechanisms and combat persistent and clinically significant multidrug-resistant pathogens could be a promising strategy for developing combination therapies in medical science. | 2025 | 40854651 |
| 6287 | 15 | 0.9997 | Whole-transcriptome analysis after the acquisition of antibiotic resistance of Cronobacter sakazakii: Mechanisms of antibiotic resistance and virulence changes. The emergence of antibiotic-resistant bacteria led to the misuse of antibiotics, resulting in the emergence of more resistant bacteria and continuous improvement in their resistance ability. Cronobacter sakazakii (C. sakazakii) has been considered a pathogen that harms infants. Incidents of C. sakazakii contamination have continued globally, several studies have indicated that C. sakazakii is increasingly resistant to antibiotics. A few studies have explored the mechanism of antibiotic resistance in C. sakazakii, and some have examined the antibiotic resistance and changes in virulence levels. We aimed to investigate the antibiotic resistance mechanism and virulence differences in C. sakazakii. The level of virulence factors of C. sakazakii was modified after induction by antibiotics compared with the antibiotic-sensitive strains, and the XS001-Ofl group had the strongest capacity to produce enterotoxin (85.18 pg/mL) and hemolysin (1.47 ng/mL). The biofilm formation capacity after induction significantly improved. The number of bases and mapped reads in all groups accounted for more than 55 % and 70 %, as detected by transcriptomic analysis. The resistance mechanism of different antibiotics was more common in efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. The level of antibiotic resistance mainly affected the expression of virulence genes associated with flagella assembly and synthesis. | 2023 | 37981356 |
| 9792 | 16 | 0.9997 | Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. The emergence of antibiotic resistant bacteria in the healthcare is a serious concern. In the Healthcare premises precisely intensive care unit are major sources of microbial diversity. Recent findings have demonstrated not only microbial diversity but also drug resistant microbes largely habitat in ICU. Pseudomonas aeruginosa found as a part of normal intestinal flora and a significant pathogen responsible for wide range of ICU acquired infection in critically ill patients. Nosocomial infection associated with this organism including gastrointestinal infection, urinary tract infections and blood stream infection. Infection caused by this organism are difficult to treat because of the presence of its innate resistance to many antibiotics (β-lactam and penem group of antibiotics), and its ability to acquire further resistance mechanism to multiple class of antibiotics, including Beta-lactams, aminoglycosides and fluoroquinolones. In the molecular evolution microbes adopted several mechanism to maintain genomic plasticity. The tool microbe use for its survival is mainly biofilm formation, quorum sensing, and horizontal gene transfer and enzyme promiscuity. Such genomic plasticity provide an ideal habitat to grow and survive in hearse environment mainly antibiotics pressure. This review focus on infection caused by Pseudomonas aeruginosa, its mechanisms of resistance and available treatment options. The present study provides a systemic review on major source of Pseudomonas aeruginosa in ICU. Further, study also emphasizes virulence gene/s associated with Pseudomonas aeruginosa genome for extended drug resistance. Study gives detailed overview of antibiotic drug resistance mechanism. | 2019 | 31194018 |
| 4402 | 17 | 0.9997 | Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections. | 2020 | 32052662 |
| 4569 | 18 | 0.9997 | Effect of oxygen on antimicrobial resistance genes from a one health perspective. Bacteria must face and adapt to a variety of physicochemical conditions in the environment and during infection. A key condition is the concentration of dissolved oxygen, proportional to the partial pressure of oxygen (PO(2)), which is extremely variable among environmental biogeographical areas and also compartments of the human and animal body. Here, we sought to understand if the phenotype of resistance determinants commonly found in Enterobacterales can be influenced by oxygen pressure. To do so, we have compared the MIC in aerobic and anaerobic conditions of isogenic Escherichia coli strains containing 136 different resistance genes against 8 antibiotic families. Our results show a complex landscape of changes in the performance of resistance genes in anaerobiosis. Certain changes are especially relevant for their intensity and the importance of the antibiotic family, like the large decreases in resistance observed against ertapenem and fosfomycin among bla(VIM) β-lactamases and certain fos genes, respectively; however, the bla(OXA-48) β-lactamase from the clinically relevant pOXA-48 plasmid conferred 4-fold higher ertapenem resistance in anaerobiosis. Strong changes in resistance patterns in anaerobiosis were also conserved in Klebsiella pneumoniae. Our results suggest that anaerobiosis is a relevant aspect that can affect the action and selective power of antibiotics for specific AMRs in different environments. | 2025 | 40286623 |
| 4626 | 19 | 0.9997 | Prophages Present in Acinetobacter pittii Influence Bacterial Virulence, Antibiotic Resistance, and Genomic Rearrangements. Introduction: Antibiotic resistance and virulence are common among bacterial populations, posing a global clinical challenge. The bacterial species Acinetobacter pittii, an infectious agent in clinical environments, has shown increasing rates of antibiotic resistance. Viruses that integrate as prophages into A. pittii could be a potential cause of this pathogenicity, as they often contain antibiotic resistance or virulence factor gene sequences. Methods: In this study, we analyzed 25 A. pittii strains for potential prophages. Using virulence factor databases, we identified many common and virulent prophages in A. pittii. Results: The analysis also included a specific catalogue of the virulence factors and antibiotic resistance genes contributed by A. pittii prophages. Finally, our results illustrate multiple similarities between A. pittii and its bacterial relatives with regard to prophage integration sites and prevalence. Discussion: These findings provide a broader insight into prophage behavior that can be applied to future studies on similar species in the Acinetobacter calcoaceticus-baumannii complex. | 2022 | 36161193 |