Control of antibiotic-resistant bacteria: memorandum from a WHO meeting. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
430201.0000Control of antibiotic-resistant bacteria: memorandum from a WHO meeting. Control of the prevalence of antibiotic-resistant bacteria is essential for the appropriate use of antibiotics for prophylaxis and treatment of infections. Hospitals are regarded as the place where antibiotic-resistant bacteria might often develop. Control of antibiotic use in hospitals is therefore one of the most important measures for effective control of antibiotic resistance. Another effective means to control antibiotic resistance is to develop a surveillance programme on a national, and international scale. This would be of great assistance, especially for forecasting future changes in the resistance of bacteria. The prevention of disease by measures other than the use of antibiotics could also reduce antibiotic resistance.This Memorandum of the WHO Scientific Working Group on Antibiotic Resistance describes the measures for controlling the prevalence of antibiotic-resistant bacteria by (a) the surveillance of antibiotic resistance, including surveillance of resistance in human pathogens and resistance determinants in the general population, and (b) control of antibiotic use in hospitals, the essential elements of which are the establishment of appropriate hospital antibiotic policy, elaboration of general strategy, and the monitoring of antibiotic use. Further research needs are also described and a number of areas are indicated where research might lead to improvements in antibiotic use and in methods for the containment of resistance. Guidelines for the appropriate use of antibiotics are presented in an Annex.19836603916
433510.9999Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different European countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly and in general decreases in resistance have followed. Guidelines for prudent use of antimicrobial agents may help to slow down the selection for resistance and should be based on knowledge regarding the normal susceptibility patterns of the causative agents and take into account the potential problems for human health. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection of resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine.200515755309
429520.9999Antibiotic resistance in the intensive care unit. The increase in antibiotic resistance over the past 10 years can be traced to several factors. This includes exogenous transmission of bacteria, usually by hospital personnel. The use of potent antibiotics also can select for resistant bacteria initially present in low quantities. Strategies to reduce antibiotic resistance can be tailored to specific outbreaks in a given ICU. General strategies for reducing antibiotic resistance, on the other hand, include varying the agents used in the ICU over time. Reduction of the duration of therapy may prove to be another method of reducing antibiotic resistance.200212357111
430130.9999Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. Antimicrobial resistance is one of the biggest worldwide challenging problems that associates with high morbidity and mortality rates. The resistance of bacteria to various antibiotic classes results in difficulties in the treatment of infectious diseases caused by those bacteria. This paper highlights and provides a critical overview of observational and experimental studies investigating the presence of antibiotic resistant bacteria in different environments in Middle East countries and the mechanisms by which bacteria acquire and spread resistance. The data of this research considered the published papers within the last ten years (2010-2020) and was carried out using PubMed. A total of 66 articles were selected in this review. This review covered studies done on antibiotic resistant bacteria found in a wide range of environments including foods, animals, groundwater, aquatic environments as well as industrial and hospital wastewater. They acquire and achieve their resistance through several mechanisms such as antibiotic resistant genes, efflux pumps and enzymatic reactions. However, the dissemination and spread of antibiotic resistant bacteria is affected by several factors like anthropogenic, domestic, inappropriate use of antibiotics and the expulsion of wastewater containing antibiotic residues to the environments. Therefore, it is important to increase the awareness regarding these activities and their effect on the environment and eventually on health.202032559543
433440.9999Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance.199910493603
419850.9999Antimicrobial resistance in bacteria from food-producing animals. risk management tools and strategies. The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals.200415525378
432860.9999Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines.200111379419
663170.9999Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed.201829554996
429480.9999Anaerobic infections: update on treatment considerations. Anaerobic bacteria are the predominant indigenous flora of humans and, as a result, play an important role in infections, some of which are serious with a high mortality rate. These opportunistic pathogens are frequently missed in cultures of clinical samples because of shortcomings in collection and transport procedures as well as lack of isolation and susceptibility testing of anaerobes in many clinical microbiology laboratories. Correlation of clinical failures with known antibacterial resistance of anaerobic bacteria is seldom possible. Changes in resistance over time, and the discovery and characterization of resistance determinants in anaerobic bacteria, has increased recognition of problems in empirical treatment and has even resulted in changes in treatment guidelines. This review discusses the role of anaerobic bacteria in the normal flora of humans, their involvement in different mixed infections, developments in antibacterial resistance of the most frequent anaerobic pathogens and possible new treatment options.201020426496
430090.9999A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance.202134522024
4117100.9999Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Several lines of evidence indicate that the use of anti-microbial agents in food animals is associated with anti-microbial resistance among bacteria isolated from humans. The use of anti-microbial agents in food animals is most clearly associated with anti-microbial resistance among Salmonella and Campylobacter isolated from humans, but also appears likely among enterococci, Escherichia coli and other bacteria. Evidence is also accumulating that the anti-microbial resistance among bacteria isolated from humans could be the result of using anti-microbial agents in food animals and is leading to human health consequences. These human health consequences include: (i) infections that would not have otherwise occurred and (ii) increased frequency of treatment failures and increased severity of infection. Increased severity of infection includes longer duration of illness, increased frequency of bloodstream infections, increased hospitalization and increased mortality. Continued work and research efforts will provide more evidence to explain the connection between the use of anti-microbial agents in food animals and anti-microbial-resistant infections in humans. One particular focus, which would solidify this connection, is to understand the factors that dictate spread of resistance determinants, especially resistant genes. With continued efforts on the part of the medical, veterinary and public health community, such research may contribute to more precise guidelines on the use of anti-microbials in food animals.200415525369
4327110.9999Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Organisms causing nosocomial infection are frequently resistant to antimicrobial agents. Studies of the reasons for this have been hindered by difficulties in defining terms, by selection biases, by artifacts produced by study methods, and by failure to control for confounding variables. Major factors leading to increased prevalence of resistant organisms in hospitals are changes in organisms causing nosocomial infection (due in part to changes in characteristics of hospital populations and in procedures and instruments used in patient care), increasing prevalence of resistance in bacteria causing community-acquired infection, and use of antimicrobial agents. A causal relationship between antibiotic usage and resistance of hospital organisms is supported by consistent association and concurrent variation in several populations, presence of a dose-response pattern, and existence of a reasonable biologic model to explain the relationship. Major influences on emergence of resistant hospital bacteria include antimicrobial effects in treated individuals, mechanisms for transfer of resistance between bacteria, and routes of transmission within the hospital for bacteria or their resistance factors. Barrier isolation techniques can help control resistant hospital bacteria. However, virtually all reports agree that careful, discriminating use of antimicrobial agents remains the keystone for minimizing this problem. This need must be communicated more effectively to prescribers.19836318289
4119120.9999How to modify conditions limiting resistance in bacteria in animals and other reservoirs. Antimicrobial agents in veterinary medicine are used for three purposes: therapy, prophylaxis, and nutrition. The major public health risk is that selection pressure leads to an increase in the pool of resistance genes. Since 1987, the nutritional use of antimicrobials in Europe has been regulated by a council directive, which demands special investigations into the potential of antimicrobials to increase rates of drug resistance. However, the prophylactic and therapeutic use of antimicrobials has sometimes led to the emergence of resistant bacteria. For example, the selective effect of the prophylactic use of gentamicin and the therapeutic use of quinolones led to the emergence of resistant salmonellae. To prevent the spread of resistant microorganisms from animals to humans, it should be recognized that antibiotics are not suitable as a compensation for poor hygiene standards or for the eradication of a pathogen from a certain environment. They should be used only by doctors or veterinarians.19978994793
4333130.9999New trends in regulatory rules and surveillance of antimicrobial resistance in bacteria of animal origin. Since the introduction in the 1940s of antibiotics as drugs against bacterial infections in human and then veterinary medicine, two major events have caused a shift in the antibiotherapy era: (1) the emergence of resistant bacteria and (2) the awareness of the limits of new drug development. It rapidly became urgent to set up measures in order to evaluate the importance of resistant bacteria and their origin as well as to limit the dissemination of resistant vectors (bacteria and bacterial genes). This led to the establishment of guidelines and regulatory rules necessary for risk assessment and clearly dependent upon monitoring and research organisations. At a veterinary level, the possible dissemination of multiresistant bacteria from animals to humans, through feeding, urged various national European and international institutions to give general recommendations to monitor and contain the emergence and diffusion of resistant strains. This paper gives an overview of the evolution of regulatory rules and monitoring systems dealing with multiresistant bacteria.200111432426
4188140.9999Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.201222849275
4331150.9999Infectious drug resistance. The emergence of antibiotic-resistant bacteria is a serious threat to public health. Infectious drug resistance, the transmission of resistant determinants from antibiotic-resistant bacteria to antibiotic-sensitive bacterial populations, creates clinical problems that must be addressed. Adequate knowledge of the mechanisms responsible for bacteria resistance is important for ensuring the benefits of antimicrobial therapy.19853981648
4182160.9999Spread of resistant bacteria and resistance genes from animals to humans--the public health consequences. The paper reviews the lines of evidence which link the use of antimicrobial drugs for food animals with the emergence of antimicrobial drug resistance in bacteria pathogenic to humans, with a particular focus on the public health aspects. Deductions from the epidemiology of food-borne infections, ecological studies, outbreak investigations, typing studies and direct epidemiological observations show that resistant bacteria are transferred from food animals to man. In addition to transfer in the food chain, exchange of mobile genetic elements among commensal and pathogenic bacteria contributes to the emergence of drug resistance. There is growing evidence that this has measurable consequences for human public health. One consequence is increased transmission supported by unrelated use of anti-microbials in humans. Other consequences are related to reduced efficacy of early empirical treatment, limitations in the choices for treatment after confirmed microbiological diagnosis, and finally a possible coselection of virulence traits. Recent epidemiological studies have measured these consequences in terms of excess mortality associated with resistance, increased duration of illness, and increased risk of invasive illness or hospitalization following infections with resistant Salmonella.200415525367
4200170.9999Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally.201526563691
4057180.9999A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. Antibiotic resistance is a growing problem, affecting microorganisms found both in hospitals and in the community. In most patients, resistant organisms arise by transmission of already resistant microorganisms from another person, rather than arising by mutation in the index patient. Antibiotic resistance genes are often borne on plasmids or transposons on which they may be spread rapidly to other organisms in the same species or in other species. Plasmids and transposons readily pick up genes for resistance to other antibiotics or nonantibiotic agents ("linked resistance"). Control of the spread of antibiotic resistance may require limitation of the usage of other agents with linked resistance as well as of the antibiotics of primary interest. A model is described for the analysis of the transmission of antibiotic-resistant enteric bacteria in the ICU. The model deals with the baseline level of antibiotic resistance in the "source" patient, the effect of antibiotics in augmenting the concentration of resistant organisms in that patient, the role of patient-to-patient contact, and factors which may influence the "colonizability" of the recipient patient. Possible measures to reduce the spread of antibiotic resistance are discussed. It is hoped that the model may serve to focus discussion on some key ingredients of the transmission cycle.19968856750
6620190.9999The growing burden of antimicrobial resistance. Since the first usage of antimicrobials, the burden of resistance among bacteria has progressively increased and has accelerated within the last 10 years. Antibiotic resistance genes were present at very low levels prior to the introduction of antibiotics and it is largely the selective pressure of antibiotic use and the resulting exposure of bacteria, not only in humans but also in companion and food animals and the environment, which has caused the rise. The increasing mobility across the globe of people, food and animals is another factor. Examples of this are the international pandemic of different genotypes of CTX-M extended-spectrum beta-lactamases (particularly CTX-M-14 and -15) and the emergence of the carbapenemase KPC-1 in both the USA and Israel. This review details examples of both the emergence and dissemination through different genetic routes, both direct and indirect selective pressure, of significance resistance in Staphylococcus aureus, Enterococcus species, Enterobacteriaceae and Pseudomonas/Acinetobacter. The response made by society to reduce resistance involves surveillance, reduced usage, improved infection control and the introduction of new antimicrobial agents. Although efforts are being made in all these areas, there is an urgent need to increase the effectiveness of these interventions or some bacterial infections will become difficult if not impossible to treat reliably.200818684701