# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 428 | 0 | 1.0000 | Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin. | 1986 | 2438417 |
| 379 | 1 | 0.9996 | Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. A broad host range cloning vehicle that can be mobilized at high frequency into Gram-negative bacteria has been constructed from the naturally occurring antibiotic resistance plasmid RK2. The vehicle is 20 kilobase pairs in size, encodes tetracycline resistance, and contains two single restriction enzyme sites suitable for cloning. Mobilization is effected by a helper plasmid consisting of the RK2 transfer genes linked to a ColE1 replicon. By use of this plasmid vehicle, a gene bank of the DNA from a wild-type strain of Rhizobium meliloti has been constructed and established in Escherichia coli. One of the hybrid plasmids in the bank contains a DNA insert of approximately 26 kilobase pairs which has homology to the nitrogenase structural gene region of Klebsiella pneumoniae. | 1980 | 7012838 |
| 443 | 2 | 0.9996 | Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid. | 1991 | 1954576 |
| 441 | 3 | 0.9995 | Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. A DNA gene probe was prepared to study genetic change mechanisms responsible for adaptation to mercury in natural bacterial communities. The probe was constructed from a 2.6-kilobase NcoI-EcoRI DNA restriction fragment which spans the majority of the mercury resistance operon (mer) in the R-factor R100. The range of specificity of this gene probe was defined by hybridization to the DNA of a wide variety of mercury-resistant bacteria previously shown to possess the mercuric reductase enzyme. All of the tested gram-negative bacteria had DNA sequences homologous to the mer probe, whereas no such homologies were detected in DNA of the gram-positive strains. Thus, the mer probe can be utilized to study gene flow processes in gram-negative bacterial communities. | 1985 | 3994373 |
| 3052 | 4 | 0.9995 | Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by sigma 55 of B. subtilis RNA polymerase. | 1983 | 6410152 |
| 426 | 5 | 0.9995 | Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane. | 1980 | 6995306 |
| 378 | 6 | 0.9994 | Construction and use of a self-cloning promoter probe vector for gram-negative bacteria. Transposon Tn5 has been used extensively for the genetic analysis of Gram- bacteria. We describe here the construction and use of a Tn5 derivative which contains the ColE1 origin of DNA replication, thereby allowing the cloning of DNA adjacent to the Tn without the need for construction of genomic libraries. The Tn is derived from Tn5-B21 [Simon et al., Gene 80 (1989) 161-169] and contains a promoter-probe lacZ gene and genes encoding resistance to tetracycline and beta-lactams. It is housed within a mobilisable suicide plasmid which can be transferred to a wide range of Gram- bacteria. The Tn was tested using pyoverdine siderophore-synthesis genes (pvd) from Pseudomonas aeruginosa. The simple cloning procedure allowed 15.9 kb of pvd-associated DNA to be cloned; in addition, the lacZ reporter gene allowed the transcription of pvd genes to be studied. The bacteria were resistant to carbenicillin only if the Tn (and hence the beta-lactamase-encoding gene) was downstream from an active promoter. | 1993 | 8386128 |
| 380 | 7 | 0.9994 | Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. To analyse the control of chloramphenicol (Cm) resistance conferred by the Staphylococcus aureus plasmid pUB112, a detailed restriction map of this plasmid has been constructed, and the position and orientation of the cat gene have been determined. An MboI restriction fragment carrying the entire cat gene of pUB112 was then cloned in another S. aureus plasmid, the kanamycin (Km) resistance vector pUB110. Depending on the orientation of the incorporated cat fragment, the level of Cm resistance varied dramatically in Bacillus subtilis cells. This effect could not be eliminated by deleting parts of the vector DNA, and only the introduction of a transcription termination signal led to orientation-independent Cm resistance. One such construct was further developed to yield a shuttle vector, replicating both in Escherichia coli and B. subtilis. Using this vector the expression of incorporated genes can be determined in both Gram-positive and Gram-negative bacteria. By in vitro transcription experiments using pUB110 DNA linearized with various restriction endonucleases as template, two pUB110 promoters could be localized and their orientations determined: one promoter controls a gene whose function is unknown, the other regulates the transcription of the KmR gene. | 1984 | 6442250 |
| 263 | 8 | 0.9994 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 429 | 9 | 0.9994 | An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria. | 1991 | 1657722 |
| 440 | 10 | 0.9994 | Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Previous studies had localised the gene (mmr) for resistance to methylenomycin A (Mm) to a 2.5-kb PstI fragment in the middle of a cluster of Mm biosynthetic genes from the Streptomyces coelicolor plasmid SCP1. In this paper, the gene has been more precisely located by sub-cloning, and the nucleotide sequence of the whole fragment has been determined. The predicted mmr-specified protein (Mr 49238) would be hydrophobic, with some homology at the amino acid level to tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria. Comparisons of hydropathy plots of the amino acid sequences reinforces the idea that the proteins are similar. It is suggested that Mm resistance may be conferred by a membrane protein, perhaps controlling efflux of the antibiotic. No significant homology was detected by hybridisation analysis between mmr and a cloned oxytetracycline (OTc)-resistance gene (tetB) of the OTc producer Streptomyces rimosus, and no cross-resistance was conferred by these genes. Sequences on both sides of mmr appear to encode proteins. The direction of translation in each case would be opposite to that of mmr translation. This suggests that mmr is transcribed as a monocistronic mRNA from a bidirectional promoter. An extensive inverted repeat sequence between the stop codons of mmr and the converging gene may function as a bidirectional transcription terminator. | 1987 | 2828187 |
| 430 | 11 | 0.9994 | Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. DNA fragments generated by the EcoRI of HindIII endonucleases from the low copy number antibiotic resistance plasmids R6 and R6-5 were separately cloned using the high copy number ColE1 or pML21 plasmid vectors and the insertional inactivation procedure. The hybrid plasmids that were obtained were used to determine the location of the EcoRI and HindIII cleavage sites on the parent plasmid genomes by means of electron microscope heteroduplex analysis and agarose gel electrophoresis. Ultracentrifugation of the cloned fragments in caesium chloride gradients localized the high buoyant density regions of R6-5 to fragments that carry the genes for resistance to streptomycin-spectinomycin, sulfonamide, and mercury and a low buoyant density region to fragments that carry the tetracycline resistance determinant. Functional analysis of hybrid plasmids localized a number of plasmid properties such as resistances to antibiotics and mercury and several replication functions to specific regions of the R6-5 genome. Precise localisation of the genes for resistance to chloramphenicol, kanamycin, fusidic acid and tetracycline was possible due to the presence of identified restriction endonuclease cleavage sites within these determinants. Only one region competent for autonomous replication was identified on the R6-5 plasmid genome and this was localized to EcoRI fragment 2 and HindIII fragment 1. However, two additional regions of replication activity designated RepB and RepC, themselves incapable of autonomous replication but capable supporting replication of a linked ColE1 plasmid in polA- bacteria, were also identified. | 1978 | 672900 |
| 427 | 12 | 0.9994 | Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Membrane vesicles are released from the surfaces of many gram-negative bacteria during growth. Vesicles consist of proteins, lipopolysaccharide, phospholipids, RNA, and DNA. Results of the present study demonstrate that membrane vesicles isolated from the food-borne pathogen Escherichia coli O157:H7 facilitate the transfer of genes, which are then expressed by recipient Salmonella enterica serovar Enteritidis or E. coli JM109. Electron micrographs of purified DNA from E. coli O157:H7 vesicles showed large rosette-like structures, linear DNA fragments, and small open-circle plasmids. PCR analysis of vesicle DNA demonstrated the presence of specific genes from host and recombinant plasmids (hly, L7095, mobA, and gfp), chromosomal DNA (uidA and eaeA), and phage DNA (stx1 and stx2). The results of PCR and the Vero cell assay demonstrate that genetic material, including virulence genes, is transferred to recipient bacteria and subsequently expressed. The cytotoxicity of the transformed enteric bacteria was sixfold higher than that of the parent isolate (E. coli JM109). Utilization of the nonhost plasmid (pGFP) permitted the evaluation of transformation efficiency (ca. 10(3) transformants microg of DNA(-1)) and demonstrated that vesicles can deliver antibiotic resistance. Transformed E. coli JM109 cells were resistant to ampicillin and fluoresced a brilliant green. The role vesicles play in genetic exchange between different species in the environment or host has yet to be defined. | 2000 | 11010892 |
| 3043 | 13 | 0.9994 | The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family. | 1984 | 6328217 |
| 439 | 14 | 0.9994 | Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Acinetobacter baumannii 19606 harbors pMAC, a 9540-bp plasmid that contains 11 predicted open-reading frames (ORFs). Cloning and transformation experiments using Acinetobacter calcoaceticus BD413 mapped replication functions within a region containing four 21-bp direct repeats (ori) and ORF 1, which codes for a predicted replication protein. Subcloning and tri-parental mating experiments mapped mobilization functions to the product of ORF 11 and an adjacent predicted oriT. Three ORFs code for proteins that share similarity to hypothetical proteins encoded by plasmid genes found in other bacteria, while the predicted products of three others do not match any known sequence. The product of ORF 8 is similar to Ohr, a hydroperoxide reductase responsible for organic peroxide detoxification and resistance in bacteria. This ORF is immediately upstream of a coding region whose product is related to the MarR family of transcriptional regulators. Disk diffusion assays showed that A. baumannii 19606 is resistant to the organic peroxide-generating compounds cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (t-BHP), although to levels lower than those detected in Pseudomonas aeruginosa PAO1. Cloning and introduction of the ohr and marR ORFs into Escherichia coli was associated with an increase in resistance to CHP and t-BHP. This appears to be the first case in which the genetic determinants involved in organic peroxide resistance are located in an extrachromosomal element, a situation that can facilitate the horizontal transfer of genetic elements coding for a function that protects bacterial cells from oxidative damage. | 2006 | 16530832 |
| 4499 | 15 | 0.9994 | Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material. | 1987 | 3032095 |
| 4503 | 16 | 0.9994 | Evolution and transfer of aminoglycoside resistance genes under natural conditions. 3'-Aminoglycoside phosphotransferases [APH(3')] were chosen as a model to study the evolution and the transfer of aminoglycoside resistance genes under natural conditions. Comparison of the amino acid sequences of APH(3') enzymes from transposons Tn903 (type I) and Tn5 (type II) detected in Gram-negative bacteria, from the Gram-positive Staphylococcus and Streptococcus (type III), from the butirosin-producing Bacillus circulans (type IV) and from a neomycin-producing Streptomyces fradiae (type V) indicate that they have diverged from a common ancestor. These structural data support the hypothesis that the antibiotic-producing strains were the source of certain resistance determinants. We have shown that kanamycin resistance in Campylobacter coli BM2509 was due to the synthesis of an APH(3')-III, an enzyme not detected previously in a Gram-negative bacterium. The genes encoding APH(3')-III in Streptococcus and Campylobacter are identical. These findings constitute evidence for a recent in-vivo transfer of DNA between Gram-positive and Gram-negative bacteria. | 1986 | 3027020 |
| 6324 | 17 | 0.9993 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 456 | 18 | 0.9993 | Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE. | 1998 | 9687401 |
| 448 | 19 | 0.9993 | Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. A total DNA clone bank of a strain of Xanthomonas campestris pv. malvacearum (Xcm) was constructed in the cosmid vector pSa747 and transfected into Escherichia coli. The Xcm strain carries at least nine identifiable avirulence (A) genes. Clones in E. coli were mated individually into a recombination-proficient Xcm isolate carrying no known A genes. Screening was for incompatibility on congenic cotton host lines that differ by single specific resistance (R) genes. Ten different cosmid clones conferring race-specific avirulence were recovered. In most cases, the same A gene clone was recovered independently several times. Using the congenic host lines and the merodiploid transconjugant pathogen strains, five of the A genes were shown to specifically interact, gene-for-gene, with individual R genes in the congenic cotton lines. Some A/R gene interactions appeared qualitatively different from others, suggesting that the physiological mechanism(s) of gene-for-gene specified incompatibility may be unique to the interactive gene pair. All A genes appeared to be chromosomally determined, three were found linked on a single 32-kilobase clone, and the rest were spaced more than 31 kilobases apart. Colinearity of the cosmid inserts with the Xcm recipient (carrying no known A genes) chromosome was demonstrated in two of the three tested. This and other evidence suggests that at least some A genes in bacteria may have the equivalent of virulence (a) alleles. The genetics of race specificity in this phytopathogenic bacterium appeared in all respects to be identical to that found in phytopathogenic fungi. | 1986 | 16593751 |