Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
428401.0000Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Environmental health is a critical concern, continuously contaminated by physical and biological components (viz., anthropogenic activity), which adversely affect on biodiversity, ecosystems and human health. Nonetheless, environmental pollution has great impact on microbial communities, especially bacteria, which try to evolve in changing environment. For instance, during the course of adaptation, bacteria easily become resistance to antibiotics and heavy metals. Antibiotic resistance genes are now one of the most vital pollutants, provided as a source of frequent horizontal gene transfer. In this review, the environmental cause of multidrug resistance (MDR) that was supposed to be driven by either heavy metals or combination of environmental factors was essentially reviewed, especially focussed on the correlation between accumulation of heavy metals and development of MDR by bacteria. This kind of correlation was seemed to be non-significant, i.e. paradoxical. Gram-positive bacteria accumulating much of toxic heavy metal (i.e. highly stress tolerance) were unlikely to become MDR, whereas Gram-negative bacteria that often avoid accumulation of toxic heavy metal by efflux pump systems were come out to be more prone to MDR. So far, other than antibiotic contaminant, no such available data strongly support the direct influence of heavy metals in bacterial evolution of MDR; combinations of factors may drive the evolution of antibiotic resistance. Therefore, Gram-positive bacteria are most likely to be an efficient member in treatment of industrial waste water, especially in the removal of heavy metals, perhaps inducing the less chance of antibiotic resistance pollution in the environment.202133811263
399410.9999Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome.202134970233
399320.9999Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.201526356096
398830.9999The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.202337034396
399740.9999Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.201121359229
428550.9999Living with sulfonamides: a diverse range of mechanisms observed in bacteria. Sulfonamides are the oldest class of synthetic antibiotics still in use in clinical and veterinary settings. The intensive utilization of sulfonamides has been leading to the widespread contamination of the environment with these xenobiotic compounds. Consequently, in addition to pathogens and commensals, also bacteria inhabiting a wide diversity of environmental compartments have been in contact with sulfonamides for almost 90 years. This review aims at giving an overview of the effect of sulfonamides on bacterial cells, including the strategies used by bacteria to cope with these bacteriostatic agents. These include mechanisms of antibiotic resistance, co-metabolic transformation, and partial or total mineralization of sulfonamides. Possible implications of these mechanisms on the ecosystems and dissemination of antibiotic resistance are also discussed. KEY POINTS: • Sulfonamides are widespread xenobiotic pollutants; • Target alteration is the main sulfonamide resistance mechanism observed in bacteria; • Sulfonamides can be modified, degraded, or used as nutrients by some bacteria.202033175245
428360.9999Development, spread and persistence of antibiotic resistance genes (ARGs) in the soil microbiomes through co-selection. Bacterial pathogens resistant to multiple antibiotics are emergent threat to the public health which may evolve in the environment due to the co-selection of antibiotic resistance, driven by poly aromatic hydrocarbons (PAHs) and/or heavy metal contaminations. The co-selection of antibiotic resistance (AMR) evolves through the co-resistance or cross-resistance, or co-regulatory mechanisms, present in bacteria. The persistent toxic contaminants impose widespread pressure in both clinical and environmental setting, and may potentially cause the maintenance and spread of antibiotic resistance genes (ARGs). In the past few years, due to exponential increase of AMR, numerous drugs are now no longer effective to treat infectious diseases, especially in cases of bacterial infections. In this mini-review, we have described the role of co-resistance and cross-resistance as main sources for co-selection of ARGs; while other co-regulatory mechanisms are also involved with cross-resistance that regulates multiple ARGs. However, co-factors also support selections, which results in development and evolution of ARGs in absence of antibiotic pressure. Efflux pumps present on the same mobile genetic elements, possibly due to the function of Class 1 integrons (Int1), may increase the presence of ARGs into the environment, which further is promptly changed as per environmental conditions. This review also signifies that mutation plays important role in the expansion of ARGs due to presence of diverse types of anthropogenic pollutants, which results in overexpression of efflux pump with higher bacterial fitness cost; and these situations result in acquisition of resistant genes. The future aspects of co-selection with involvement of systems biology, synthetic biology and gene network approaches have also been discussed.202032681784
399270.9999Resistance in the environment. Antibiotics, disinfectants and bacteria resistant to them have been detected in environmental compartments such as waste water, surface water, ground water, sediments and soils. Antibiotics are released into the environment after their use in medicine, veterinary medicine and their employment as growth promoters in animal husbandry, fish farming and other fields. There is increasing concern about the growing resistance of pathogenic bacteria in the environment, and their ecotoxic effects. Increasingly, antibiotic resistance is seen as an ecological problem. This includes both the ecology of resistance genes and that of the resistant bacteria themselves. Little is known about the effects of subinhibitory concentrations of antibiotics and disinfectants on environmental bacteria, especially with respect to resistance. According to the present state of our knowledge, the impact on the frequency of resistance transfer by antibacterials present in the environment is questionable. The input of resistant bacteria into the environment seems to be an important source of resistance in the environment. The possible impact of resistant bacteria on the environment is not yet known. Further research into these issues is warranted.200415215223
399180.9999Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Biofilm-forming bacteria are ubiquitous in the environment and also include biofilm-forming pathogens. Environmental biofilms may form a reservoir for risk genes and may act as a challenge for human health. Examples of the health relevance of biofilms are the increase in antibiotic resistant bacteria hosted in biofilms in hospital and environment and consequently the interaction of these bacteria with human cells, e.g. in the immune system. Although data concerning the occurrence and spread of resistant bacteria within hospital care units are available, the fate of these bacteria in the environment and especially in the aquatic environment has barely been investigated. Once antibiotic resistant bacteria have entered the environment, a back coupling by ingestion or other possible entry into the host has to be prevented. Therefore a strategy to investigate paths of entry, accumulation and spread of resistant bacteria in environmental compartments has been developed using quantitative determination of genetic resistance determinants. Additionally a bacterial bioassay assessed bioeffectivity thresholds of low antibiotic concentrations. This approach enables an evaluation of the potential of contaminated waters to exert a selection pressure on bacterial communities and thus promote the persistence of resistant organisms. Completed with an indicator system for the identification of sources of multiresistant bacteria a concept for monitoring and evaluation of environmental compartments with respect to their potential of antibiotic resistance dissemination is suggested.200616705607
410290.9999Forces shaping the antibiotic resistome. Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance.201425213620
6462100.9999Human health implications of clinically relevant bacteria in wastewater habitats. The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.201323508533
9637110.9999Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection. The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.202438642082
9630120.9999Novel Insights into Selection for Antibiotic Resistance in Complex Microbial Communities. Recent research has demonstrated that selection for antibiotic resistance occurs at very low antibiotic concentrations in single-species experiments, but the relevance of these findings when species are embedded in complex microbial communities is unclear. We show that the strength of selection for naturally occurring resistance alleles in a complex community remains constant from low subinhibitory to above clinically relevant concentrations. Selection increases with antibiotic concentration before reaching a plateau where selection remains constant over a 2-order-magnitude concentration range. This is likely to be due to cross protection of the susceptible bacteria in the community following rapid extracellular antibiotic degradation by the resistant population, shown experimentally through a combination of chemical quantification and bacterial growth experiments. Metagenome and 16S rRNA analyses of sewage-derived bacterial communities evolved under cefotaxime exposure show preferential enrichment for bla(CTX-M) genes over all other beta-lactamase genes, as well as positive selection and co-selection for antibiotic resistant, opportunistic pathogens. These findings have far-reaching implications for our understanding of the evolution of antibiotic resistance, by challenging the long-standing assumption that selection occurs in a dose-dependent manner.IMPORTANCE Antibiotic resistance is one of the greatest global issues facing society. Still, comparatively little is known about selection for resistance at very low antibiotic concentrations. We show that the strength of selection for clinically important resistance genes within a complex bacterial community can remain constant across a large antibiotic concentration range (wide selective space). Therefore, largely understudied ecological compartments could be just as important as clinical environments for selection of antibiotic resistance.201830042197
4068130.9999Co-selection for antibiotic resistance by environmental contaminants. The environment is increasingly recognised as a hotspot for the selection and dissemination of antibiotic resistant bacteria and antibiotic resistance genes. These can be selected for by antibiotics and non-antibiotic agents (such as metals and biocides), with the evidence to support this well established by observational and experimental studies. However, there is emerging evidence to suggest that plant protection products (such as herbicides), and non-antibiotic drugs (such as chemotherapeutic agents), can also co-select for antibiotic resistance. This review aims to provide an overview of four classes of non-antibiotic agents (metals, biocides, plant protection products, and non-antibiotic drugs) and how they may co-select for antibiotic resistance, with a particular focus on the environment. It also aims to identify key knowledge gaps that should be addressed in future work, to better understand these potential co-selective agents.202439843965
3985140.9999The scourge of antibiotic resistance: the important role of the environment. Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.201323723195
6479150.9999Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.200919398507
4282160.9999Efflux Pump Inhibitors in Controlling Antibiotic Resistance: Outlook under a Heavy Metal Contamination Context. Multi-drug resistance to antibiotics represents a growing challenge in treating infectious diseases. Outside the hospital, bacteria with the multi-drug resistance (MDR) phenotype have an increased prevalence in anthropized environments, thus implying that chemical stresses, such as metals, hydrocarbons, organic compounds, etc., are the source of such resistance. There is a developing hypothesis regarding the role of metal contamination in terrestrial and aquatic environments as a selective agent in the proliferation of antibiotic resistance caused by the co-selection of antibiotic and metal resistance genes carried by transmissible plasmids and/or associated with transposons. Efflux pumps are also known to be involved in either antibiotic or metal resistance. In order to deal with these situations, microorganisms use an effective strategy that includes a range of expressions based on biochemical and genetic mechanisms. The data from numerous studies suggest that heavy metal contamination could affect the dissemination of antibiotic-resistant genes. Environmental pollution caused by anthropogenic activities could lead to mutagenesis based on the synergy between antibiotic efficacy and the acquired resistance mechanism under stressors. Moreover, the acquired resistance includes plasmid-encoded specific efflux pumps. Soil microbiomes have been reported as reservoirs of resistance genes that are available for exchange with pathogenic bacteria. Importantly, metal-contaminated soil is a selective agent that proliferates antibiotic resistance through efflux pumps. Thus, the use of multi-drug efflux pump inhibitors (EPIs) originating from natural plants or synthetic compounds is a promising approach for restoring the efficacy of existing antibiotics, even though they face a lot of challenges.202337049674
9003170.9999Extreme Environments and High-Level Bacterial Tellurite Resistance. Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.201931766694
6466180.9999The antibiotic resistome: gene flow in environments, animals and human beings. The antibiotic resistance is natural in bacteria and predates the human use of antibiotics. Numerous antibiotic resistance genes (ARGs) have been discovered to confer resistance to a wide range of antibiotics. The ARGs in natural environments are highly integrated and tightly regulated in specific bacterial metabolic networks. However, the antibiotic selection pressure conferred by the use of antibiotics in both human medicine and agriculture practice leads to a significant increase of antibiotic resistance and a steady accumulation of ARGs in bacteria. In this review, we summarized, with an emphasis on an ecological point of view, the important research progress regarding the collective ARGs (antibiotic resistome) in bacterial communities of natural environments, human and animals, i.e., in the one health settings.We propose that the resistance gene flow in nature is "from the natural environments" and "to the natural environments"; human and animals, as intermediate recipients and disseminators, contribute greatly to such a resistance gene "circulation."201728500429
3826190.9999Co-resistance: an opportunity for the bacteria and resistance genes. Co-resistance involves transfer of several genes into the same bacteria and/or the acquisition of mutations in different genetic loci affecting different antimicrobials whereas pleiotropic resistance implies the same genetic event affecting several antimicrobials. There is an increasing prevalence of isolates with co-resistance which are over-represented within the so-called high-risk clones. Compensatory events avoid fitness cost of co-resistance, even in the absence of antimicrobials. Nevertheless, they might be selected by different antimicrobials and a single agent might select co-resistant isolates. This process, named as co-selection, is not avoided with cycling or mixing strategies of antimicrobial use. Co-resistance and co-selection processes increase the opportunity for persistence of the bacteria and resistance genes and should be considered when designing strategies for decreasing antimicrobial resistance.201121840259