The hidden impact of antibacterial resistance in respiratory tract infection. Steering an appropriate course: principles to guide antibiotic choice. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
427201.0000The hidden impact of antibacterial resistance in respiratory tract infection. Steering an appropriate course: principles to guide antibiotic choice. The prevalence and degree of antibacterial resistance in common respiratory pathogens are increasing worldwide. The health impact of resistance is not yet fully understood. However, once the impact of resistance becomes measurable, it may be too late to apply interventions to reduce resistance levels and regain previous quality and cost of care. We should address resistance now, before patient care is irreversibly compromised. The association between antibiotic consumption and the prevalence of resistance is widely assumed. However, evidence suggests that there is a more complex. multifactorial relationship between antibiotic use and resistance. It is also assumed that there is an adaptive fitness cost for bacterial resistance mutations. However, in some cases, bacteria are able to acquire 'compensatory genes' negating any negative impact of resistance mutations. Mathematical modeling indicates that the timescale for the emergence of resistance is typically shorter than the decay time following a decline in antibiotic consumption. Against this background, a general principle is proposed: to maximize patient outcome whilst minimizing the potential for selection and spread of resistance. This may be achieved through the use of agents that fulfill defined pharmacodynamic and pharmacokinetic parameters and elicit rapid eradication of the bacterial population, including emerging resistant mutants, from the site of infection. The choice of agent may not be the same in all regions, as selection will depend on local resistance patterns and disease etiology; however, the application of this principle may help to preserve the benefits of antibiotic therapy.200111419671
427110.9999Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: (i) a single mutation, which provides a large resistance benefit, or (ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling, we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.202134001313
947320.9999The role of the animal host in the management of bacteriophage resistance during phage therapy. Multi-drug-resistant bacteria are associated with significantly higher morbidity and mortality. The possibilities for discovering new antibiotics are limited, but phage therapy - the use of bacteriophages (viruses infecting bacteria) to cure infections - is now being investigated as an alternative or complementary treatment to antibiotics. However, one of the major limitations of this approach lies in the antagonistic coevolution between bacteria and bacteriophages, which determines the ultimate success or failure of phage therapy. Here, we review the possible influence of the animal host on phage resistance and its consequences for the efficacy of phage therapy. We also discuss the value of in vitro assays for anticipating the dynamics of phage resistance observed in vivo.202336512896
406130.9999Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Market launching of a new antibiotic requires knowing in advance its benefits and possible risks, and among them how rapidly resistance will emerge and spread among bacterial pathogens. This information is not only useful from a public health point of view, but also for pharmaceutical industry, in order to reduce potential waste of resources in the development of a compound that might be discontinued at the short term because of resistance development. Most assays currently used for predicting the emergence of resistance are based on culturing the target bacteria by serial passages in the presence of increasing concentrations of antibiotics. Whereas these assays may be valuable for identifying mutations that might cause resistance, they are not useful to establish how fast resistance might appear, neither to address the risk of spread of resistance genes by horizontal gene transfer. In this article, we review recent information pertinent for a more accurate prediction on the emergence and dispersal of antibiotic resistance.201121835695
943840.9999The challenge of antibiotic resistance: need to contemplate. "Survival of the fittest " holds good for men and animals as also for bacteria. A majority of bacteria in nature are nonpathogenic, a large number of them, live as commensals on our body leading a symbiotic existence. A limited population of bacteria which has became pathogenic was also sensitive to antibiotics to begin with. It is the man made antibiotic pressure, which has led to the emergence and spread of resistant genes amongst bacteria. Despite the availability of a large arsenal of antibiotics, the ability of bacteria to become resistant to antibacterial agents is amazing. This is more evident in the hospital settings where the antibiotic usage is maximum. The use of antibiotics is widespread in clinical medicine, agriculture, aquaculture, veterinary practice, poultry and even in household products. The major reason for this is the inappropriate use of antibiotics due to a lack of uniform policy and disregard to hospital infection control practices. The antibiotic cover provided by newer antibiotics has been an important factor responsible for the emergence of multi-drug resistant bacteria. Bacterial infections increase the morbidity and mortality, increase the cost of treatment, and prolong hospital stay adding to the economical burden on the nation. The problem is further compounded by the lack of education and " over the counter " availability of antibiotics in developing countries. Antibiotic resistance is now all pervasive with the developed world as much vulnerable to the problem. Despite advancement in medical technology for diagnosis and patient care, a person can still die of an infection caused by a multi-drug resistant bacteria. It is time to think, plan and formulate a strong antibiotic policy to address the burgeoning hospital infection.200515756040
943750.9999Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine.201424595606
953460.9999Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. Antibiotic resistance is a major medical and public health challenge, characterized by global increases in the prevalence of resistant strains. The conventional view is that all antibiotic resistance is problematic, even when not in pathogens. Resistance in commensal bacteria poses risks, as resistant organisms can provide a reservoir of resistance genes that can be horizontally transferred to pathogens or may themselves cause opportunistic infections in the future. While these risks are real, we propose that commensal resistance can also generate benefits during antibiotic treatment of human infection, by promoting continued ecological suppression of pathogens. To define and illustrate this alternative conceptual perspective, we use a two-species mathematical model to identify the necessary and sufficient ecological conditions for beneficial resistance. We show that the benefits are limited to species (or strain) interactions where commensals suppress pathogen growth and are maximized when commensals compete with, rather than prey on or otherwise exploit pathogens. By identifying benefits of commensal resistance, we propose that rather than strictly minimizing all resistance, resistance management may be better viewed as an optimization problem. We discuss implications in two applied contexts: bystander (nontarget) selection within commensal microbiomes and pathogen treatment given polymicrobial infections. IMPORTANCE Antibiotic resistance is commonly viewed as universally costly, regardless of which bacterial cells express resistance. Here, we derive an opposing logic, where resistance in commensal bacteria can lead to reductions in pathogen density and improved outcomes on both the patient and public health scales. We use a mathematical model of commensal-pathogen interactions to define the necessary and sufficient conditions for beneficial resistance, highlighting the importance of reciprocal ecological inhibition to maximize the benefits of resistance. More broadly, we argue that determining the benefits as well as the costs of resistances in human microbiomes can transform resistance management from a minimization to an optimization problem. We discuss applied contexts and close with a review of key resistance optimization dimensions, including the magnitude, spectrum, and mechanism of resistance.202336475750
406070.9999Current status of antibiotic resistance in animal production. It is generally accepted that the more antibiotics we use, the faster bacteria will develop resistance. Further it has been more or less accepted that once an antibiotic is withdrawn from the clinic, the resistance genes will eventually disappear, [table: see text] since they will no more be of any survival value for the bacterial cell. However, recent research has shown that after a long time period of exposure to antibiotics, certain bacterial species may adapt to this environment in such a way that they keep their resistance genes stably also after the removal of antibiotics. Thus, there is reason to believe that once resistance has developed it will not even in the long term be eradicated. What then can we do not to increase further the already high level of antibiotic-resistant bacteria in animals? We should of course encourage a prudent use of these valuable drugs. In Sweden antibiotics are not used for growth promoting purposes and are available only after veterinary prescription on strict indications. Generally, antimicrobial treatment of animals on individual or on herd basis should not be considered unless in connection with relevant diagnostics. The amounts of antibiotics used and the development of resistance in important pathogens should be closely monitored. Furthermore, resistance monitoring in certain non-pathogenic intestinal bacteria, which may serve as a reservoir for resistance genes is probably more important than hitherto anticipated. Once the usage of or resistance to a certain antibiotic seems to increase in an alarming way, steps should be taken to limit the usage of the drug in order to prevent further spread of resistance genes in animals, humans and the environment. Better methods for detecting and quantifying antibiotic resistance have to be developed. Screening methods must be standardized and evaluated in order to obtain comparable and reliable results from different countries. The genetic mechanisms for development of resistance and spread of resistance genes should be studied in detail. Research in these areas will lead to new ideas on how to inhibit the resistance mechanisms. So far, it has been well established that a heavy antimicrobial drug selective pressure in overcrowded populations of production animals creates favourable environments both for the emergence and the spread of antibiotic resistance genes.199910783714
961180.9999Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct 'in vitro evolutionary simulations' using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria-evolved in vitro and in vivo-had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.202235188102
406590.9998The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.201323347633
8999100.9998Growth-Dependent Predation and Generalized Transduction of Antimicrobial Resistance by Bacteriophage. Bacteriophage (phage) are both predators and evolutionary drivers for bacteria, notably contributing to the spread of antimicrobial resistance (AMR) genes by generalized transduction. Our current understanding of this complex relationship is limited. We used an interdisciplinary approach to quantify how these interacting dynamics can lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methicillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene, with generalized transducing phage. After a growth phase of 8 h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of which was dependent on the starting concentration of phage. We detected double-resistant bacteria as early as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple mathematical models of the bacteria and phage relationship and found that phage-bacteria dynamics were best captured by a model in which phage burst size decreases as the bacteria population reaches stationary phase and where phage predation is frequency-dependent. We estimated that one in every 10(8) new phage generated was a transducing phage carrying an AMR gene and that double-resistant bacteria were always predominantly generated by transduction rather than by growth. Our results suggest a shift in how we understand and model phage-bacteria dynamics. Although rates of generalized transduction could be interpreted as too rare to be significant, they are sufficient in our system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the potential of phage to contribute to the growing burden of AMR is likely underestimated. IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated through phage therapy as a potential solution to the threat of antimicrobial resistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by transduction when they accidentally carry nonphage DNA between bacteria. Using laboratory work and mathematical models, we show that transduction leads to evolution of multidrug-resistant bacteria in less than 8 h and that phage production decreases when bacterial growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dynamics of phage predation and transduction lead to complex interactions with bacteria, which must be clarified to prevent phage from contributing to the spread of AMR.202235311576
4276110.9998Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be little cross-resistance to antibiotics and phages. In vitro experiments using the bacterium Pseudomonas fluorescens, a lytic phage, and the antibiotic kanamycin supported this prediction: an antibiotic-phage combination dramatically decreased the chance of bacterial population survival that indicates resistance evolution, compared with antibiotic treatment alone, whereas the phage alone did not affect bacterial survival. This effect of the combined treatment in preventing resistance evolution was robust to immigration of bacteria from an untreated environment, but not to immigration from environment where the bacteria had coevolved with the phage. By contrast, an isogenic hypermutable strain constructed from the wild-type P. fluorescens evolved resistance to all treatments regardless of immigration, but typically suffered very large fitness costs. These results suggest that an antibiotic-phage combination may show promise as an antimicrobial strategy.201223028398
9682120.9998Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells.202236145418
4274130.9998Antibiotic resistance: counting the cost. Acquisition of drug resistance should impose a cost on bacteria. Recent studies, however, suggest that natural selection acts to reduce, or eliminate, the growth disadvantage of resistant bacteria, making it difficult to reverse the high levels of antibiotic resistance currently found in hospitals and the community.19968939559
9492140.9998The Search for 'Evolution-Proof' Antibiotics. The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves.201829191398
4118150.9998Antimicrobial resistance in livestock. Antimicrobial resistance may become a major problem in veterinary medicine as a consequence of the intensive use and misuse of antimicrobial drugs. Related problems are now arising in human medicine, such as the appearance of multi-resistant food-borne pathogens. Product characteristics, dose, treatment interval and duration of treatment influence the selection pressure for antimicrobial drug resistance. There are theoretical, experimental and clinical indications that the emergence of de novo resistance in a pathogenic population can be prevented by minimizing the time that suboptimal drug levels are present in the infected tissue compartment. Until recently, attention has been focused on target pathogens. However, it should be kept in mind that when antimicrobial drugs are used in an individual, resistance selection mainly affects the normal body flora. In the long term, this is at least equally important as resistance selection in the target pathogens, as the horizontal transfer of resistance genes converts almost all pathogenic bacteria into potential recipients for antimicrobial resistance. Other factors contributing to the epidemiology of antimicrobial resistance are the localization and size of the microbial population, and the age, immunity and contact intensity of the host. In livestock, dynamic herd-related resistance patterns have been observed in different animal species.200312667177
9452160.9998Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host's immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.202235203766
9686170.9998Selective pressures for public antibiotic resistance. The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development.202539158370
4275180.9998Antibiotic resistance and its cost: is it possible to reverse resistance? Most antibiotic resistance mechanisms are associated with a fitness cost that is typically observed as a reduced bacterial growth rate. The magnitude of this cost is the main biological parameter that influences the rate of development of resistance, the stability of the resistance and the rate at which the resistance might decrease if antibiotic use were reduced. These findings suggest that the fitness costs of resistance will allow susceptible bacteria to outcompete resistant bacteria if the selective pressure from antibiotics is reduced. Unfortunately, the available data suggest that the rate of reversibility will be slow at the community level. Here, we review the factors that influence the fitness costs of antibiotic resistance, the ways by which bacteria can reduce these costs and the possibility of exploiting them.201020208551
9683190.9998Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.201323554414