# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4265 | 0 | 1.0000 | Bacteriophages as vehicles of the resistome in cystic fibrosis. Environmental microbial communities and human microbiota represent a huge reservoir of mobilizable genes, the 'mobilome', including a pool of genes encoding antimicrobial resistance, the 'resistome'. Whole-genome sequencing of bacterial genomes from cystic fibrosis (CF) patients has demonstrated that bacteriophages contribute significantly to bacterial genome alterations, and metagenomic analysis of respiratory tract DNA viral communities has revealed the presence of genes encoding antimicrobial resistance in bacteriophages of CF patients. CF airways should now be considered as the site of complex microbiota, where bacteriophages are vehicles for the adaptation of bacteria to this specific environment and for the emergence and selection of multidrug-resistant bacteria with chimeric repertoires. As phages are already known to be mobilized during chronic infection of the lungs of patients with CF, it seems particularly important to improve the understanding of the mechanisms of phage induction to prevent the spread of virulence and/or antimicrobial resistance determinants within the CF population as well as in the community. Such a modern point of view may be a seminal reflection for clinical practice in the future since current antimicrobial therapy guidelines in the context of CF may lead to the emergence of genes encoding antimicrobial resistance. | 2011 | 21816766 |
| 4340 | 1 | 0.9999 | Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes. | 2021 | 33010049 |
| 3829 | 2 | 0.9999 | Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates. The spread of antibiotic resistance is driving interest in new approaches to control bacterial pathogens. This includes applying multiple antibiotics strategically, using bacteriophages against antibiotic-resistant bacteria, and combining both types of antibacterial agents. All these approaches rely on or are impacted by associations among resistance phenotypes (where bacteria resistant to one antibacterial agent are also relatively susceptible or resistant to others). Experiments with laboratory strains have shown strong associations between some resistance phenotypes, but we lack a quantitative understanding of associations among antibiotic and phage resistance phenotypes in natural and clinical populations. To address this, we measured resistance to various antibiotics and bacteriophages for 94 natural and clinical Escherichia coli isolates. We found several positive associations between resistance phenotypes across isolates. Associations were on average stronger for antibacterial agents of the same type (antibiotic-antibiotic or phage-phage) than different types (antibiotic-phage). Plasmid profiles and genetic knockouts suggested that such associations can result from both colocalization of resistance genes and pleiotropic effects of individual resistance mechanisms, including one case of antibiotic-phage cross-resistance. Antibiotic resistance was predicted by core genome phylogeny and plasmid profile, but phage resistance was predicted only by core genome phylogeny. Finally, we used observed associations to predict genes involved in a previously uncharacterized phage resistance mechanism, which we verified using experimental evolution. Our data suggest that susceptibility to phages and antibiotics are evolving largely independently, and unlike in experiments with lab strains, negative associations between antibiotic resistance phenotypes in nature are rare. This is relevant for treatment scenarios where bacteria encounter multiple antibacterial agents.IMPORTANCE Rising antibiotic resistance is making it harder to treat bacterial infections. Whether resistance to a given antibiotic spreads or declines is influenced by whether it is associated with altered susceptibility to other antibiotics or other stressors that bacteria encounter in nature, such as bacteriophages (viruses that infect bacteria). We used natural and clinical isolates of Escherichia coli, an abundant species and key pathogen, to characterize associations among resistance phenotypes to various antibiotics and bacteriophages. We found associations between some resistance phenotypes, and in contrast to past work with laboratory strains, they were exclusively positive. Analysis of bacterial genome sequences and horizontally transferred genetic elements (plasmids) helped to explain this, as well as our finding that there was no overall association between antibiotic resistance and bacteriophage resistance profiles across isolates. This improves our understanding of resistance evolution in nature, potentially informing new rational therapies that combine different antibacterials, including bacteriophages. | 2017 | 29089428 |
| 4050 | 3 | 0.9999 | Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases. | 2022 | 35740113 |
| 4266 | 4 | 0.9999 | Novel Bacteriophages Capable of Disrupting Biofilms From Clinical Strains of Aeromonas hydrophila. The increase in global warming has favored growth of a range of opportunistic environmental bacteria and allowed some of these to become more pathogenic to humans. Aeromonas hydrophila is one such organism. Surviving in moist conditions in temperate climates, these bacteria have been associated with a range of diseases in humans, and in systemic infections can cause mortality in up to 46% of cases. Their capacity to form biofilms, carry antibiotic resistance mechanisms, and survive disinfection, has meant that they are not easily treated with traditional methods. Bacteriophage offer a possible alternative approach for controlling their growth. This study is the first to report the isolation and characterization of bacteriophages lytic against clinical strains of A. hydrophila which carry intrinsic antibiotic resistance genes. Functionally, these novel bacteriophages were shown to be capable of disrupting biofilms caused by clinical isolates of A. hydrophila. The potential exists for these to be tested in clinical and environmental settings. | 2020 | 32117183 |
| 4052 | 5 | 0.9999 | Functional metagenomics for the investigation of antibiotic resistance. Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored. | 2014 | 24556726 |
| 4240 | 6 | 0.9999 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 4057 | 7 | 0.9999 | A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. Antibiotic resistance is a growing problem, affecting microorganisms found both in hospitals and in the community. In most patients, resistant organisms arise by transmission of already resistant microorganisms from another person, rather than arising by mutation in the index patient. Antibiotic resistance genes are often borne on plasmids or transposons on which they may be spread rapidly to other organisms in the same species or in other species. Plasmids and transposons readily pick up genes for resistance to other antibiotics or nonantibiotic agents ("linked resistance"). Control of the spread of antibiotic resistance may require limitation of the usage of other agents with linked resistance as well as of the antibiotics of primary interest. A model is described for the analysis of the transmission of antibiotic-resistant enteric bacteria in the ICU. The model deals with the baseline level of antibiotic resistance in the "source" patient, the effect of antibiotics in augmenting the concentration of resistant organisms in that patient, the role of patient-to-patient contact, and factors which may influence the "colonizability" of the recipient patient. Possible measures to reduce the spread of antibiotic resistance are discussed. It is hoped that the model may serve to focus discussion on some key ingredients of the transmission cycle. | 1996 | 8856750 |
| 4422 | 8 | 0.9999 | Diversity among multidrug-resistant enterococci. Enterococci are associated with both community- and hospital-acquired infections. Even though they do not cause severe systemic inflammatory responses, such as septic shock, enterococci present a therapeutic challenge because of their resistance to a vast array of antimicrobial drugs, including cell-wall active agents, all commercially available aminoglycosides, penicillin and ampicillin, and vancomycin. The combination of the latter two occurs disproportionately in strains resistant to many other antimicrobial drugs. The propensity of enterococci to acquire resistance may relate to their ability to participate in various forms of conjugation, which can result in the spread of genes as part of conjugative transposons, pheromone-responsive plasmids, or broad host-range plasmids. Enterococcal hardiness likely adds to resistance by facilitating survival in the environment (and thus enhancing potential spread from person to person) of a multidrug-resistant clone. The combination of these attributes within the genus Enterococcus suggests that these bacteria and their resistance to antimicrobial drugs will continue to pose a challenge. | 1998 | 9452397 |
| 4040 | 9 | 0.9999 | Molecular Insights into Antimicrobial Resistance Traits of Commensal Human Gut Microbiota. Antimicrobial resistance (AMR) among bacterial species that resides in complex ecosystems is a natural phenomenon. Indiscriminate use of antimicrobials in healthcare, livestock, and agriculture provides an evolutionary advantage to the resistant variants to dominate the ecosystem. Ascendency of resistant variants threatens the efficacy of most, if not all, of the antimicrobial drugs commonly used to prevent and/or cure microbial infections. Resistant phenotype is very common in enteric bacteria. The most common mechanisms of AMR are enzymatic modifications to the antimicrobials or their target molecules. In enteric bacteria, most of the resistance traits are acquired by horizontal gene transfer from closely or distantly related bacterial population. AMR traits are generally linked with mobile genetic elements (MGEs) and could rapidly disseminate to the bacterial species through horizontal gene transfer (HGT) from a pool of resistance genes. Although prevalence of AMR genes among pathogenic bacteria is widely studied in the interest of infectious disease management, the resistance profile and the genetic traits that encode resistance to the commensal microbiota residing in the gut of healthy humans are not well-studied. In the present study, we have characterized AMR phenotypes and genotypes of five dominant commensal enteric bacteria isolated from the gut of healthy Indians. Our study revealed that like pathogenic bacteria, enteric commensals are also multidrug-resistant. The genes encoding antibiotic resistance are physically linked with MGEs and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Consequently, the AMR genes present in the chromosome of commensal gut bacteria could be a potential source of resistance functions for other enteric pathogens. | 2019 | 30009332 |
| 4267 | 10 | 0.9999 | Relationship between Virulence and Resistance among Gram-Negative Bacteria. Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host. | 2020 | 33092201 |
| 4317 | 11 | 0.9999 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |
| 4364 | 12 | 0.9999 | Antibiotic resistance is prevalent in an isolated cave microbiome. Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome. | 2012 | 22509370 |
| 4069 | 13 | 0.9999 | Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view. | 2021 | 34360847 |
| 4046 | 14 | 0.9998 | Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. The evolution of multidrug resistant bacteria to the most diverse antimicrobials known so far pose a serious problem to global public health. Currently, microorganisms that develop resistant phenotypes to multiple drugs are associated with high morbidity and mortality. This resistance is encoded by a group of genes termed 'bacterial resistome', divided in intrinsic and extrinsic resistome. The first one refers to the resistance displayed on an organism without previous exposure to an antibiotic not involving horizontal genetic transfer, and it can be acquired via mutations. The latter, on the contrary, is acquired exclusively via horizontal genetic transfer involving mobile genetic elements that constitute the 'bacterial mobilome'. This transfer is mediated by three different mechanisms: transduction, transformation, and conjugation. Recently, a problem of public health due to implications in the emergence of multi-drug resistance in Aeromonas spp. strains in water environments has been described. This is derived from the genetic material transfer via conjugation events. This is important, since bacteria that have acquired antibiotic resistance in natural environments can cause infections derived from their ingestion or direct contact with open wounds or mucosal tissue, which in turn, by their resistant nature, makes their eradication complex. Implications of the emergence of resistance in Aeromonas spp. by horizontal gene transfer on public health are discussed. | 2019 | 31540466 |
| 4181 | 15 | 0.9998 | The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics. | 2006 | 16956128 |
| 9575 | 16 | 0.9998 | Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance. Resistome is a cluster of microbial genes encoding proteins with necessary functions to resist the action of antibiotics. Resistome governs essential and separate biological functions to develop resistance against antibiotics. The widespread clinical and nonclinical uses of antibiotics over the years have combined to select antibiotic-resistant determinants and develop resistome in bacteria. At present, the emergence of drug resistance because of resistome is a significant problem faced by clinicians for the treatment of Salmonella infection. Antibiotic resistome is a dynamic and ever-expanding component in Salmonella. The foundation of resistome in Salmonella is laid long before; therefore, the antibiotic resistome of Salmonella is reviewed, discussed, and summarized. We have searched the literature using PubMed, MEDLINE, and Google Scholar with related key terms (resistome, Salmonella, antibiotics, drug resistance) and prepared this review. In this review, we summarize the status of resistance against antibiotics in S. typhi, highlight the seminal work in the resistome of S. typhi and the genes involved in the antibiotic resistance, and discuss the various methods to identify S. typhi resistome for the proactive identification of this infection and quick diagnosis of the disease. | 2021 | 34085183 |
| 9406 | 17 | 0.9998 | Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. | 2015 | 25784907 |
| 4425 | 18 | 0.9998 | Multidrug resistance in bacteria. Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. | 2009 | 19231985 |
| 4391 | 19 | 0.9998 | 'To be, or not to be'-The dilemma of 'silent' antimicrobial resistance genes in bacteria. Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes-genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health. | 2022 | 35882476 |