Genetic competence and transformation in oral streptococci. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
425601.0000Genetic competence and transformation in oral streptococci. The oral streptococci are normally non-pathogenic residents of the human microflora. There is substantial evidence that these bacteria can, however, act as "genetic reservoirs" and transfer genetic information to transient bacteria as they make their way through the mouth, the principal entry point for a wide variety of bacteria. Examples that are of particular concern include the transfer of antibiotic resistance from oral streptococci to Streptococcus pneumoniae. The mechanisms that are used by oral streptococci to exchange genetic information are not well-understood, although several species are known to enter a physiological state of genetic competence. This state permits them to become capable of natural genetic transformation, facilitating the acquisition of foreign DNA from the external environment. The oral streptococci share many similarities with two closely related Gram-positive bacteria, S. pneumoniae and Bacillus subtilis. In these bacteria, the mechanisms of quorum-sensing, the development of competence, and DNA uptake and integration are well-characterized. Using this knowledge and the data available in genome databases allowed us to identify putative genes involved in these processes in the oral organism Streptococcus mutans. Models of competence development and genetic transformation in the oral streptococci and strategies to confirm these models are discussed. Future studies of competence in oral biofilms, the natural environment of oral streptococci, will be discussed.200111497374
425510.9999Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.201021133668
969620.9999Evolution of resistance in microorganisms of human origin. Resistance to antimicrobials in bacteria results from either evolution of "new" DNA or from variation in existing DNA. Evidence suggests that new DNA did not originate since the use of antibiotics in medicine, but evolved long ago in soil bacteria. This evidence is based on functional and structural homologies of resistance proteins in human pathogens, and resistance proteins or physiological proteins of soil bacteria. Variation in existing DNA has been shown to comprise variations in structural or regulatory genes of the normal chromosome or mutations in already existing plasmid-mediated resistance genes modifying the resistance phenotype. The success of R-determinants in human pathogens was due to their horizontal spread by transformation, transduction and conjugation. Furthermore, transposition has enabled bacteria to efficiently distribute R-determinants between independent DNA-molecules. Since the genetic processes involved in the development of resistance are rare events, the selective pressure exerted by antibiotics has significantly contributed to the overall evolutionary picture. With few exceptions, experimental data about the role of antibiotic usage outside human medicine with respect to the resistance problem in human pathogens are missing. Epidemiological data about the occurrence of resistance in human pathogens seem to indicate that the major contributing factor to the problem we face today was the extensive use of antibiotics in medicine itself.19938212510
928630.9999Bacterial sex in dental plaque. Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.201323741559
942040.9999The intrinsic resistance of bacteria. Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter.201627806928
425050.9999Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions.201728258229
931060.9999Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids.19846319093
943670.9999Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.201327029301
928580.9998Bacterial genetic exchange in nature. Most bacteria are haploid organisms containing only one copy of each gene per cell for most of the growth cycle. This means that the chance for correcting random mutations in bacterial genes would depend entirely on the complementarity inherent in DNA structures, unless homologous DNA sequences can be imported from outside the cell. Bacteria, like all living organisms have evolved at least one autonomous mechanism, conjugation, for exchanging portions of genetic materials between two related cells. The ecological benefits of conjugation include the expansion of metabolic versatility and resistance to hazardous environmental conditions. Natural bacterial genetic exchange also occurs through virus infections (transduction) and through the uptake of extracellular DNA (transformation). The origin and ecological benefits of transduction and transformation are difficult to assess because they are driven by factors external to the affected cell. Bacterial genetic exchange has implications for the evolution of phenotypes that are either beneficial to humans, such as biodegradation of toxic xenobiotic chemicals, or that are detrimental, such as the evolution of pathogenesis and the spread of antibiotic resistance. Understanding natural bacterial genetic exchange mechanisms is also relevant to the assessment of dispersal risks associated with genetically engineered bacteria and recombinant genes in the environment.19958533067
969090.9998Distribution of horizontally transferred heavy metal resistance operons in recent outbreak bacteria. Mankind is confronted by the outbreaks of highly virulent and multi-drug resistant pathogens. The outbreak strains often belong to well-known diseases associated species such as Salmonella, Klebsiella and Mycobacterium, but even normally commensal and environmental microorganisms may suddenly acquire properties of virulent bacteria and cause nosocomial infections. The acquired virulence is often associated with lateral exchange of pathogenicity genomic islands containing drug and heavy metal resistance determinants. Metal ions are used by the immune system of macro-organisms against bactericidal agents. The ability to control heavy metal homeostasis is a factor that allows the survival of pathogenic microorganisms in macrophages. In this paper, we investigate the origin of heavy metal resistance operons in the recent outbreak strains and the possible routes which may lead to acquisitions of these genes by potentially new pathogens. We hypothesize that new outbreak microorganisms appear intermittently on an intersection of the non-specialized, genetically naïve strains of potential pathogens and virulence factor comprising vectors (plasmid and/or phages) newly generated in the environmental microflora. Global contamination of the environment and climate change may also have an effect toward the acceleration and appearance of new pathogens.201222934243
9288100.9998Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.19957766205
4239110.9998Bacterial resistance. Pathogenic bacteria remain adaptable to an increasingly hostile environment and a wider variety of more potent antibiotics. Organisms not intrinsically prepared for defense have been able to acquire resistance to newer antimicrobial agents. Chromosomal mutations alone cannot account for the rapid emergence and spread of antibiotic resistance. It has been established that plasmids and transposons are particularly important in the evolution of antibiotic-resistant bacteria. Plasmid- or transposon-mediated resistance provides the bacteria with pre-evolved genes refined to express high-level resistance. In particular, transposons can transfer these resistance determinants in diverse bacterial species, and nature provides in humans and animals large intestinal reservoirs in which such communications are facilitated. Antibiotic therapy exerts selection pressures on bacteria. Eradication or marked reduction in the populations of susceptible organisms promotes the overgrowth of intrinsically resistant strains and favors those resistant as a result of favorable chromosomal mutations or via plasmids or transposons. In our hospitals, where antibiotic consumption continues to increase, the nosocomial flora consists of many resistant bacteria, and infections acquired in the nosocomial setting are now far more severe than their community-acquired counterparts. There is convincing evidence that infection control measures must take into further consideration the contribution of the hospital worker as carrier and mediator of antibiotic resistance.19911649425
9493120.9998Regulatory integration of horizontally-transferred genes in bacteria. Horizontal transfer of genetic material is a fact of microbial life and bacteria can obtain new DNA sequences through the processes of conjugation, transduction and transformation. This offers the bacterium the possibility of evolving rapidly by importing new genes that code for new traits that may assist in environmental adaptation. Research in this area has focused in particular on the role of horizontal transfer in the dissemination through bacterial populations of genes for resistance to antimicrobial agents, including antibiotics. It is becoming clear that many other phenotypic characteristics have been acquired through horizontal routes and that these include traits contributing to pathogenesis and symbiosis. An important corollary to the acquisition of new genes is the problem of how best to integrate them in the existing gene regulatory circuits of the recipient so that fitness is not compromised initially and can be enhanced in the future through optimal expression of the new genes.200919273337
4258130.9998State of the knowledge of bacterial resistance. Bacteria have adapted a variety of different ways to acquire antibiotic resistance, fostering the rapid development of resistance within a short evolutionary time. The general genetic basis of events leading to and promoting antibiotic resistance formation in bacteria are presented and exemplified by showing the evolution of methicillin, glycopeptide, linezolid, and ketolide resistance in Staphylococcus aureus.200616651067
9428140.9998Biofilms and their properties. Bacteria within the oral cavity live primarily as complex, polymicrobial biofilms. Dental biofilms are necessary etiological factors for dental caries and periodontal diseases but have also been implicated in diseases outside the oral cavity. Biofilm is the preferred lifestyle for bacteria, and biofilms are found on almost any surface in nature. Bacteria growing within a biofilm exhibit an altered phenotype. Substantial changes in gene expression occur when bacteria are in close proximity or physical contact with one another or with the host. This may facilitate nutritional co-operation, cell-cell signaling, and gene transfer, including transfer of antibiotic-resistance genes, thus rendering biofilm bacteria with properties other than those found in free-floating, planktonic bacteria. We will discuss biofilm properties and possible consequences for future prophylaxis.201830178559
9309150.9998Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation.200818193080
9697160.9998Origins and evolution of antibiotic resistance. The massive prescription of antibiotics and their non-regulated and extensive usage has resulted in the development of extensive antibiotic resistance in microorganisms; this has been of great clinical significance. Antibiotic resistance occurs not only by mutation of microbial genes which code for antibiotic uptake into cells or the binding sites for antibiotics, but mostly by the acquisition of heterologous resistance genes from external sources. The physical characteristics of the microbial community play a major role in gene exchange, but antimicrobial agents provide the selective pressure for the development of resistance and promote the transfer of resistance genes among bacteria. The control of antibiotic usage is essential to prevent the development of resistance to new antibiotics.19969019139
4171170.9998Plasmids as Key Players in Acinetobacter Adaptation. This review briefly summarizes the data on the mechanisms of development of the adaptability of Acinetobacters to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of A. lwoffii, as well as the genomes of A. lwoffii and A. baumannii, has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of Acinetobacter to their living conditions. In particular, it has been demonstrated that the plasmids of various strains of Acinetobacter differ from each other in their structure and gene composition depending on the lifestyle of their host bacteria. Plasmids of modern strains are enriched with antibiotic-resistant genes, while the content of genes involved in resistance to heavy metals and arsenic is comparable to plasmids from modern and ancient strains. It is concluded that Acinetobacter plasmids may ensure the survival of host bacteria under conditions of various types of environmental and clinical stresses. A brief overview of the main mechanisms of horizontal gene transfer on plasmids inherent in Acinetobacter strains is also given.202236142804
9406180.9998Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.201525784907
9402190.9998Phage resistance in lactic acid bacteria. The interactions between lactic acid bacteria and their phages are commercially significant. Current research has focused on the elucidation of the mechanisms and genetics of phage resistance. Phage resistance genes have been linked to plasmid DNA for Streptococcus lactis and Streptococcus cremoris, and preliminary studies suggest the operation of mechanisms such as the prevention of phage adsorption, restriction/modification, and abortive infection. Some phage resistance plasmids can be conjugally transferred, providing a means of dissemination among phage-sensitive strains for the construction of phage-resistant starter cultures.19883139060