# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4244 | 0 | 1.0000 | Molecular mechanisms of antibiotic resistance. Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics. | 2015 | 25435309 |
| 4245 | 1 | 1.0000 | Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets. | 2020 | 31659373 |
| 4243 | 2 | 0.9999 | Action and resistance mechanisms of antibiotics: A guide for clinicians. Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and "bypass" of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials. | 2017 | 29109626 |
| 9486 | 3 | 0.9999 | Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed. | 2025 | 40149034 |
| 9487 | 4 | 0.9999 | Molecular mechanisms of antibiotic resistance revisited. Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies. | 2023 | 36411397 |
| 9465 | 5 | 0.9999 | Antimicrobial drug resistance: "Prediction is very difficult, especially about the future". Evolution of bacteria towards resistance to antimicrobial drugs, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. Resistance to antimicrobial drugs in bacteria can result from mutations in housekeeping structural or regulatory genes. Alternatively, resistance can result from the horizontal acquisition of foreign genetic information. The 2 phenomena are not mutually exclusive and can be associated in the emergence and more efficient spread of resistance. This review discusses the predictable future of the relationship between antimicrobial drugs and bacteria. | 2005 | 16318687 |
| 4239 | 6 | 0.9999 | Bacterial resistance. Pathogenic bacteria remain adaptable to an increasingly hostile environment and a wider variety of more potent antibiotics. Organisms not intrinsically prepared for defense have been able to acquire resistance to newer antimicrobial agents. Chromosomal mutations alone cannot account for the rapid emergence and spread of antibiotic resistance. It has been established that plasmids and transposons are particularly important in the evolution of antibiotic-resistant bacteria. Plasmid- or transposon-mediated resistance provides the bacteria with pre-evolved genes refined to express high-level resistance. In particular, transposons can transfer these resistance determinants in diverse bacterial species, and nature provides in humans and animals large intestinal reservoirs in which such communications are facilitated. Antibiotic therapy exerts selection pressures on bacteria. Eradication or marked reduction in the populations of susceptible organisms promotes the overgrowth of intrinsically resistant strains and favors those resistant as a result of favorable chromosomal mutations or via plasmids or transposons. In our hospitals, where antibiotic consumption continues to increase, the nosocomial flora consists of many resistant bacteria, and infections acquired in the nosocomial setting are now far more severe than their community-acquired counterparts. There is convincing evidence that infection control measures must take into further consideration the contribution of the hospital worker as carrier and mediator of antibiotic resistance. | 1991 | 1649425 |
| 4238 | 7 | 0.9999 | Biocide tolerance in bacteria. Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry. | 2013 | 23340387 |
| 4242 | 8 | 0.9999 | The basis of antibiotic resistance in bacteria. The ability of bacteria to resist the inhibitory and lethal actions of antibiotics is a major clinical problem, and has been observed with every antimicrobial agent. In this article, the major mechanisms of antibiotic resistance are reviewed, and the clinical relevance of such resistance in selected bacteria is discussed. | 1990 | 2192071 |
| 4241 | 9 | 0.9999 | Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified. | 1993 | 8212509 |
| 9435 | 10 | 0.9999 | Why are bacteria refractory to antimicrobials? The incidence of antibiotic resistance in pathogenic bacteria is rising. Antibiotic resistance can be achieved via three distinct routes: inactivation of the drug, modification of the target of action, and reduction in the concentration of drug that reaches the target. It has long been recognized that specific antibiotic resistance mechanisms can be acquired through mutation of the bacterial genome or by gaining additional genes through horizontal gene transfer. Recent attention has also brought to light the importance of different physiological states for the survival of bacteria in the presence of antibiotics. It is now apparent that bacteria have complex, intrinsic resistance mechanisms that are often not detected in the standard antibiotic sensitivity tests performed in clinical laboratories. The development of resistance in bacteria found in surface-associated aggregates or biofilms, owing to these intrinsic mechanisms, is paramount. | 2002 | 12354553 |
| 9801 | 11 | 0.9999 | Problems and changing patterns of resistance with gram-negative bacteria. Throughout the antibiotic era, the emergence of drug-resistant bacteria has paralleled the development of new antimicrobial agents. As a result of selection pressures and invasive techniques that prolong the lives of seriously ill hospital patients, gram-negative bacilli have become the dominant causes of nosocomial infection. These microorganisms produce a diversity of antibiotic-inactivating enzymes. Moreover, the cell envelope of gram-negative bacteria provides a series of barriers that keep antibiotics from reaching their targets. Resistance factors can be transmitted among bacteria of different genera and species, thus conferring multidrug resistance. These problems continue to challenge scientists to better understand resistance mechanisms and to develop new compounds to circumvent them. | 1985 | 3909311 |
| 9488 | 12 | 0.9999 | Minimizing potential resistance: the molecular view. The major contribution of molecular biology to the study of antibiotic resistance has been the elucidation of nearly all biochemical mechanisms of resistance and the routes for dissemination of genetic information among bacteria. In this review, we consider the potential contribution of molecular biology to counteracting the evolution of resistant bacteria. In particular, we emphasize the fact that fundamental approaches have had direct practical effects on minimizing potential resistance: by improving interpretation of resistance phenotypes, by providing more adequate human therapy, by fostering more prudent use of antibiotics, and by allowing the rational design of new drugs that evade existing resistance mechanisms or address unexploited targets. | 2001 | 11524711 |
| 9464 | 13 | 0.9999 | Why is antibiotic resistance a deadly emerging disease? Evolution of bacteria towards resistance to antimicrobial agents, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. In this review, we will consider the biochemical mechanisms and the genetics that bacteria use to offset antibiotic selective pressure. The data provided are mainly, if not exclusively, taken from the work carried out in the laboratory, although there are numerous other examples in the literature. | 2016 | 26806259 |
| 4058 | 14 | 0.9999 | Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim. | 2012 | 22849265 |
| 4250 | 15 | 0.9999 | Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. | 2017 | 28258229 |
| 4240 | 16 | 0.9999 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 9520 | 17 | 0.9999 | Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors. | 2019 | 30987566 |
| 9677 | 18 | 0.9999 | Inhibiting conjugation as a tool in the fight against antibiotic resistance. Antibiotic resistance, especially in gram-negative bacteria, is spreading globally and rapidly. Development of new antibiotics lags behind; therefore, novel approaches to the problem of antibiotic resistance are sorely needed and this commentary highlights one relatively unexplored target for drug development: conjugation. Conjugation is a common mechanism of horizontal gene transfer in bacteria that is instrumental in the spread of antibiotic resistance among bacteria. Most resistance genes are found on mobile genetic elements and primarily spread by conjugation. Furthermore, conjugative elements can act as a reservoir to maintain antibiotic resistance in the bacterial population even in the absence of antibiotic selection. Thus, conjugation can spread antibiotic resistance quickly between bacteria of the microbiome and pathogens when selective pressure (antibiotics) is introduced. Potential drug targets include the plasmid-encoded conjugation system and the host-encoded proteins important for conjugation. Ideally, a conjugation inhibitor will be used alongside antibiotics to prevent the spread of resistance to or within pathogens while not acting as a growth inhibitor itself. Inhibiting conjugation will be an important addition to our arsenal of strategies to combat the antibiotic resistance crisis, allowing us to extend the usefulness of antibiotics. | 2019 | 30343487 |
| 9522 | 19 | 0.9999 | Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Antibiotic resistance has become one of the most challenging problems in health care. Bacteria conjugation is one of the main mechanisms whereby bacteria become resistant to antibiotics. Therefore, the search for specific conjugation inhibitors (COINs) is of interest in the fight against the spread of antibiotic resistances in a variety of laboratory and natural environments. Several compounds, discovered as COINs, are promising candidates in the fight against plasmid dissemination. In this review, we survey the effectiveness and toxicity of the most relevant compounds. Particular emphasis has been placed on unsaturated fatty acid derivatives, as they have been shown to be efficient in preventing plasmid invasiveness in bacterial populations. Biochemical and structural studies have provided insights concerning their potential molecular targets and inhibitory mechanisms. These findings open a new avenue in the search of new and more effective synthetic inhibitors. In this pursuit, the use of structure-based drug design methods will be of great importance for the screening of ligands and binding sites of putative targets. | 2017 | 29255449 |