# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4237 | 0 | 1.0000 | Antibiotics: action and resistance in gram-negative bacteria. Therapeutic control of beta-lactamase-producing bacteria has been a major clinical problem in the past 40 years. Gram-negative bacteria are most often resistant to antibiotics as a result of the acquisition of resistant genes or gene mutation. Studies have shown that newly developed antibiotics will shortly fail to be active against the bacteria because of the emergence of resistance. Some resistant bacteria have been found to exist even before the antibiotic was developed. Selective pressure by the antibiotic is, therefore, one of the major factors to explain the increase of resistance. Recently, numerous resistant mechanisms that differ in their substrate profiles have been described at increasing frequencies. The inappropriate use of new antibiotics with extended spectrum further complicated the problem. Because resistance is a largely unavoidable consequence of widespread use of antibiotics, it is crucial that the use of drugs is selective by exercising prudent judgment and not excessive. The actual prevalence of resistance should be continuously monitored each year. Caution should be paid to the direct extrapolation of study results from other geographic areas, because the local prevalence of resistance is unlikely to be identical to those reported elsewhere. The impact of resistance to an antibiotic and its specific mechanisms, including transmissibility, should also be carefully studied. Such information may help in designing strategies for maximizing the therapeutic usefulness of drugs and minimizing the emergence of resistance. | 2002 | 11950113 |
| 4316 | 1 | 0.9999 | Why do antimicrobial agents become ineffectual? Antibiotic resistance has evolved over the past 50 years from a merely microbiological curiosity to a serious medical problem in hospitals all over the world. Resistance has been reported in almost all species of gram-positive and -negative bacteria to various classes of antibiotics including recently developed ones. Bacteria acquire resistance by reducing permeability and intracellular accumulation, by alteration of targets of antibiotic action, and by enzymatic modification of antibiotics. Inappropriate use of an antibiotic selects resistant strains much more frequently. Once resistant bacteria has emerged, the resistance can be transferred to other bacteria by various mechanisms, resulting in multiresistant strains. MRSA is one of the typical multiresistant nosocomial pathogens. A study of the PFGE pattern of endonuclease-digested chromosomal DNA showed that MRSA of a few clones were disseminated among newborns in the NICU of a Japanese hospital. In this regard, it is important to choose appropriate antibiotics and then after some time, to change to other classes to reduce the selection of resistant strains. Since the development of epoch-making new antibiotics is not expected in the near future, it has become very important to use existing antibiotics prudently based on mechanisms of antibiotic action and bacterial resistance. Control of nosocomial infection is also very important to reduce further spread of resistant bacteria. | 1998 | 10097676 |
| 4241 | 2 | 0.9999 | Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified. | 1993 | 8212509 |
| 9800 | 3 | 0.9999 | Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance. | 1994 | 7723996 |
| 4058 | 4 | 0.9999 | Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim. | 2012 | 22849265 |
| 9801 | 5 | 0.9999 | Problems and changing patterns of resistance with gram-negative bacteria. Throughout the antibiotic era, the emergence of drug-resistant bacteria has paralleled the development of new antimicrobial agents. As a result of selection pressures and invasive techniques that prolong the lives of seriously ill hospital patients, gram-negative bacilli have become the dominant causes of nosocomial infection. These microorganisms produce a diversity of antibiotic-inactivating enzymes. Moreover, the cell envelope of gram-negative bacteria provides a series of barriers that keep antibiotics from reaching their targets. Resistance factors can be transmitted among bacteria of different genera and species, thus conferring multidrug resistance. These problems continue to challenge scientists to better understand resistance mechanisms and to develop new compounds to circumvent them. | 1985 | 3909311 |
| 4317 | 6 | 0.9999 | Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade. | 2001 | 11524705 |
| 4236 | 7 | 0.9999 | Resistance of bacteria to antibacterial agents: report of Task Force 2. The use of a growing number of antibacterial agents over the past half century has elicited a widespread deployment of genes for resistance to these agents in populations of bacteria throughout the world. Task Force 2 of the NIH Study on Antibiotic Use and Antibiotic Resistance Worldwide found that data on prevalence of resistance was fragmentary and underanalyzed but indicative of several trends. Resistance to older antibacterial agents appears to have stabilized overall, but shifts of resistance genes into new strains and species have continued to cause new clinical problems. Resistance to newer antibacterial agents has increased. Resistance is more prevalent in developing countries. Systematic surveillance of resistance integrated with understanding of its molecular basis is needed for control of resistance. | 1987 | 3299646 |
| 4328 | 8 | 0.9999 | Bugs for the next century: the issue of antibiotic resistance. OBJECTIVE: To address the issue of emerging antibiotic resistance and examine which organisms will continue to pose problems in the new century. METHODS: Review of articles pertaining to bacteria recognised for increasing resistance. RESULTS: Changing resistance patterns are correlated with patterns of antibiotic use. This results in fewer effective drugs against "old" established bacteria e.g. gram-positives such as Streptococcus pneumoniae and Staphylococcus aureus. Resistance in gram-negative bacteria is also steadily increasing. Nosocomial gram-negative bacteria are capable of many different resistance mechanisms, often rendering them multiply-resistant. Antibiotic resistance results in morbidity and mortality from treatment failures and increased health care costs. CONCLUSION: Despite extensive research and enormous resources spent, the pace of drug development has not kept up with the development of resistance. As resistance spreads, involving more and more organisms, there is concern that we may be nearing the end of the antimicrobial era. Measures that can and should be taken to counter this threat of antimicrobial resistance include co-ordinated surveillance, rational antibiotic usage, better compliance with infection control and greater use of vaccines. | 2001 | 11379419 |
| 4294 | 9 | 0.9999 | Anaerobic infections: update on treatment considerations. Anaerobic bacteria are the predominant indigenous flora of humans and, as a result, play an important role in infections, some of which are serious with a high mortality rate. These opportunistic pathogens are frequently missed in cultures of clinical samples because of shortcomings in collection and transport procedures as well as lack of isolation and susceptibility testing of anaerobes in many clinical microbiology laboratories. Correlation of clinical failures with known antibacterial resistance of anaerobic bacteria is seldom possible. Changes in resistance over time, and the discovery and characterization of resistance determinants in anaerobic bacteria, has increased recognition of problems in empirical treatment and has even resulted in changes in treatment guidelines. This review discusses the role of anaerobic bacteria in the normal flora of humans, their involvement in different mixed infections, developments in antibacterial resistance of the most frequent anaerobic pathogens and possible new treatment options. | 2010 | 20426496 |
| 4318 | 10 | 0.9999 | Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance. | 1996 | 10879217 |
| 4240 | 11 | 0.9999 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 4245 | 12 | 0.9999 | Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets. | 2020 | 31659373 |
| 4242 | 13 | 0.9999 | The basis of antibiotic resistance in bacteria. The ability of bacteria to resist the inhibitory and lethal actions of antibiotics is a major clinical problem, and has been observed with every antimicrobial agent. In this article, the major mechanisms of antibiotic resistance are reviewed, and the clinical relevance of such resistance in selected bacteria is discussed. | 1990 | 2192071 |
| 4057 | 14 | 0.9999 | A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. Antibiotic resistance is a growing problem, affecting microorganisms found both in hospitals and in the community. In most patients, resistant organisms arise by transmission of already resistant microorganisms from another person, rather than arising by mutation in the index patient. Antibiotic resistance genes are often borne on plasmids or transposons on which they may be spread rapidly to other organisms in the same species or in other species. Plasmids and transposons readily pick up genes for resistance to other antibiotics or nonantibiotic agents ("linked resistance"). Control of the spread of antibiotic resistance may require limitation of the usage of other agents with linked resistance as well as of the antibiotics of primary interest. A model is described for the analysis of the transmission of antibiotic-resistant enteric bacteria in the ICU. The model deals with the baseline level of antibiotic resistance in the "source" patient, the effect of antibiotics in augmenting the concentration of resistant organisms in that patient, the role of patient-to-patient contact, and factors which may influence the "colonizability" of the recipient patient. Possible measures to reduce the spread of antibiotic resistance are discussed. It is hoped that the model may serve to focus discussion on some key ingredients of the transmission cycle. | 1996 | 8856750 |
| 4313 | 15 | 0.9998 | Molecular epidemiology of clinically significant antibiotic resistance genes. Antimicrobials were first introduced into medical practice a little over 60 years ago and since that time resistant strains of bacteria have arisen in response to the selective pressure of their use. This review uses the paradigm of the evolution and spread of beta-lactamases and in particular beta-lactamases active against antimicrobials used to treat Gram-negative infections. The emergence and evolution particularly of CTX-M extended-spectrum beta-lactamases (ESBLs) is described together with the molecular mechanisms responsible for both primary mutation and horizontal gene transfer. Reference is also made to other significant antibiotic resistance genes, resistance mechanisms in Gram-negative bacteria, such as carbepenamases, and plasmid-mediated fluoroquinolone resistance. The pathogen Staphylococcus aureus is reviewed in detail as an example of a highly successful Gram-positive bacterial pathogen that has acquired and developed resistance to a wide range of antimicrobials. The role of selective pressures in the environment as well as the medical use of antimicrobials together with the interplay of various genetic mechanisms for horizontal gene transfer are considered in the concluding part of this review. | 2008 | 18311156 |
| 4329 | 16 | 0.9998 | Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections. | 1993 | 8149138 |
| 4331 | 17 | 0.9998 | Infectious drug resistance. The emergence of antibiotic-resistant bacteria is a serious threat to public health. Infectious drug resistance, the transmission of resistant determinants from antibiotic-resistant bacteria to antibiotic-sensitive bacterial populations, creates clinical problems that must be addressed. Adequate knowledge of the mechanisms responsible for bacteria resistance is important for ensuring the benefits of antimicrobial therapy. | 1985 | 3981648 |
| 9435 | 18 | 0.9998 | Why are bacteria refractory to antimicrobials? The incidence of antibiotic resistance in pathogenic bacteria is rising. Antibiotic resistance can be achieved via three distinct routes: inactivation of the drug, modification of the target of action, and reduction in the concentration of drug that reaches the target. It has long been recognized that specific antibiotic resistance mechanisms can be acquired through mutation of the bacterial genome or by gaining additional genes through horizontal gene transfer. Recent attention has also brought to light the importance of different physiological states for the survival of bacteria in the presence of antibiotics. It is now apparent that bacteria have complex, intrinsic resistance mechanisms that are often not detected in the standard antibiotic sensitivity tests performed in clinical laboratories. The development of resistance in bacteria found in surface-associated aggregates or biofilms, owing to these intrinsic mechanisms, is paramount. | 2002 | 12354553 |
| 4391 | 19 | 0.9998 | 'To be, or not to be'-The dilemma of 'silent' antimicrobial resistance genes in bacteria. Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes-genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health. | 2022 | 35882476 |