Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
422201.0000Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Lactic acid bacteria (LAB) areĀ a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.202134076710
422110.9999Antibiotic resistance in probiotic bacteria. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.201323882264
422020.9999Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.202335694810
422930.9999Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Over the last 50 years, human life expectancy and quality of life have increased dramatically due to improvements in nutrition and the use of antibiotics in the fight against infectious diseases. However, the heyday of antibiotic treatment is on the wane due to the appearance and spread of resistance among harmful microorganisms. At present, there is great concern that commensal bacterial populations from food and the gastrointestinal tract (GIT) of humans and animals, such as lactic acid bacteria (LAB) and bifidobacteria, could act as a reservoir for antibiotic resistance genes. Resistances could ultimately be transferred to human pathogenic and opportunistic bacteria hampering the treatment of infections. LAB species have traditionally been used as starter cultures in the production of fermented feed and foodstuffs. Further, LAB and bifidobacteria are normal inhabitants of the GIT where they are known to exert health-promoting effects, and selected strains are currently been used as probiotics. Antibiotic resistance genes carried by LAB and bifidobacteria can be transferred to human pathogenic bacteria either during food manufacture or during passage through the GIT. The aim of this review is to address well-stated and recent knowledge on antibiotic resistance in typical LAB and bifidobacteria species. Therefore, the commonest antibiotic resistance profiles, the distinction between intrinsic and atypical resistances, and some of the genetic determinants already discovered will all be discussed.200717418306
425540.9999Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.201021133668
423050.9999Antibiotic resistance in food lactic acid bacteria--a review. Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria.200516289406
423160.9999Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. The worldwide use, and misuse, of antibiotics for about sixty years in the so-called antibiotic era, has been estimated in some one to ten million tons, a relevant part of which destined for non-therapeutic purposes such as growth promoting treatments for livestock or crop protection. As highly adaptable organisms, bacteria have reacted to this dramatic change in their environment by developing several well-known mechanisms of antibiotic resistance and are becoming increasingly resistant to conventional antibiotics. In recent years, commensal bacteria have become a cause of concern since they may act as reservoirs for the antibiotic resistance genes found in human pathogens. In particular, the food chain has been considered the main route for the introduction of animal and environment associated antibiotic resistant bacteria into the human gastrointestinal tract (GIT) where these genes may be transferred to pathogenic and opportunistic bacteria. As fundamental microbial communities in a large variety of fermented foods and feed, the anaerobe facultative, aerotolerant lactic acid bacteria (LAB) are likely to play a pivotal role in the resistance gene exchange occurring in the environment, food, feed and animal and human GIT. Therefore their antibiotic resistance features and their genetic basis have recently received increasing attention. The present article summarises the results of the latest studies on the most typical genera belonging to the low G + C branch of LAB. The evolution of the criteria established by European regulatory bodies to ensure a safe use of microorganisms in food and feed, including the assessment of their antibiotic resistance is also reviewed.201121515393
422470.9999The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed.201830123208
769380.9999Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria. The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. IMPORTANCE: The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria and evaluated their genetic mobility to other human gut commensal microorganisms.201727864179
426790.9999Relationship between Virulence and Resistance among Gram-Negative Bacteria. Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host.202033092201
4043100.9998Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products. In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.201627383577
4227110.9998Antibiotic resistance determinants in the interplay between food and gut microbiota. A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods.201121526400
4226120.9998Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Probiotic bacteria are known to harbor intrinsic and mobile genetic elements that confer resistance to a wide variety of antibiotics. Their high amounts in dietary supplements can establish a reservoir of antibiotic resistant genes in the human gut. These resistant genes can be transferred to pathogens that share the same intestinal habitat thus resulting in serious clinical ramifications. While antibiotic resistance of probiotic bacteria from food, human and animal sources have been well-documented, the resistant profiles of probiotics from dietary supplements have only been recently studied. These products are consumed with increasing regularity due to their health claims that include the improvement of intestinal health and immune response as well as prevention of acute and antibiotic-associated diarrhea and cancer; but, a comprehensive risk assessment on the spread of resistant genes to human health is lacking. Here, we highlight recent reports of antibiotic resistance of probiotic bacteria isolated from dietary supplements, and propose complementary strategies that can shed light on the risks of consuming such products in the context of a global widespread of antibiotic resistance. In concomitant with a broader screening of antibiotic resistance in probiotic supplements is the use of computational simulations, live imaging and functional genomics to harvest knowledge on the evolutionary behavior, adaptations and dynamics of probiotics studied in conditions that best represent the human gut including in the presence of antibiotics. The underlying goal is to enable the health benefits of probiotics to be exploited in a responsible manner and with minimal risk to human health.201728579981
4223130.9998Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.202236144306
3825140.9998Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats. BACKGROUND: An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. FINDINGS: Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. CONCLUSION: Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes.201020193062
3918150.9998Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.201324115946
4044160.9998Antibiotic resistance in food-related bacteria--a result of interfering with the global web of bacterial genetics. A series of antibiotic resistance genes have been sequenced and found to be identical or nearly identical in various ecological environments. Similarly, genetic vectors responsible for assembly and mobility of antibiotic resistance genes, such as transposons, integrons and R plasmids of similar or identical type are also widespread in various niches of the environment. Many zoonotic bacteria carry antibiotic resistance genes directly from different food-producing environments to the human being. These circumstances may have a major impact on the degree for success in treating infectious diseases in man. Several recent examples demonstrate that use of antibiotics in all parts of the food production chain contributes to the increasing level of antibiotic resistance among the food-borne pathogenic bacteria. Modern industrialized food production adds extra emphasis on lowering the use of antibiotics in all parts of agriculture, husbandry and fish farming because these food products are distributed to very large numbers of humans compared to more traditional smaller scale niche production.200212222637
4050170.9998Are Virulence and Antibiotic Resistance Genes Linked? A Comprehensive Analysis of Bacterial Chromosomes and Plasmids. Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases.202235740113
4266180.9998Novel Bacteriophages Capable of Disrupting Biofilms From Clinical Strains of Aeromonas hydrophila. The increase in global warming has favored growth of a range of opportunistic environmental bacteria and allowed some of these to become more pathogenic to humans. Aeromonas hydrophila is one such organism. Surviving in moist conditions in temperate climates, these bacteria have been associated with a range of diseases in humans, and in systemic infections can cause mortality in up to 46% of cases. Their capacity to form biofilms, carry antibiotic resistance mechanisms, and survive disinfection, has meant that they are not easily treated with traditional methods. Bacteriophage offer a possible alternative approach for controlling their growth. This study is the first to report the isolation and characterization of bacteriophages lytic against clinical strains of A. hydrophila which carry intrinsic antibiotic resistance genes. Functionally, these novel bacteriophages were shown to be capable of disrupting biofilms caused by clinical isolates of A. hydrophila. The potential exists for these to be tested in clinical and environmental settings.202032117183
4637190.9998What Differentiates Probiotic from Pathogenic Bacteria? The Genetic Mobility of Enterococcus faecium Offers New Molecular Insights. Enterococcus faecium is a lactic acid bacterium with applications in food engineering and nutrigenomics, including as starter cultures in fermented foods. To differentiate the E. faecium probiotic from pathogenic bacteria, physiological analyses are often used but they do not guarantee that a bacterial strain is not pathogenic. We report here new findings and an approach based on comparison of the genetic mobility of (1) probiotic, (2) pathogenic, and (3) nonpathogenic and non-probiotic strains, so as to differentiate probiotics, and inform their safe use. The region of the 16S ribosomal DNA (rDNA) genes of different E. faecium strains native to Pernambuco-Brazil was used with the GenBank query sequence. Complete genomes were selected and divided into three groups as noted above to identify the mobile genetic elements (MGEs) (transposase, integrase, conjugative transposon protein and phage) and antibiotic resistance genes (ARGs), and to undertake pan-genome analysis and multiple genome alignment. Differences in the number of MGEs were found in ARGs, in the presence and absence of the genes that differentiate E. faecium probiotics and pathogenic bacteria genetically. Our data suggest that genetic mobility appears to be informative in differentiating between probiotic and pathogenic strains. While the present findings are not necessarily applicable to all probiotics, they offer novel molecular insights to guide future research in nutrigenomics, clinical medicine, and food engineering on new ways to differentiate pathogenic from probiotic bacteria.202032762606