Control and monitoring of antimicrobial resistance in bacteria in food-producing animals in Japan. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
420301.0000Control and monitoring of antimicrobial resistance in bacteria in food-producing animals in Japan. Increased antimicrobial resistance in bacteria that cause infections in humans is a threat to public health. The use of antimicrobials in food-producing animals in the form of veterinary medicine and feed additives may lead to the emergence or spread of antimicrobial resistance in bacteria of animal origin. In Japan, the use of antimicrobials in food-producing animals is regulated by the Pharmaceutical Affairs Law and Feed Safety Law to minimise the risk of emergence and spread of antimicrobial resistance in bacteria. Since December 2003, all antimicrobials used in food-producing animals have been subjected to risk assessment by the Food Safety Commission. In addition, an antimicrobial resistance monitoring programme has been in place since 2000 to monitor the evolution of resistance to different antimicrobials in bacteria in food-producing animals.200920391381
661910.9999Reflection paper on the use of third and fourth generation cephalosporins in food producing animals in the European Union: development of resistance and impact on human and animal health. Resistance to third and fourth generation cephalosporins is rapidly increasing in bacteria infecting humans. Although many of these problems are linked to human to human transmission and to use of antimicrobials in human medicine, the potential role of community reservoirs such as food producing animals needs to be scrutinized. Resistance to third and fourth generation cephalosporins is emerging in enteric bacteria of food producing animals and also in food of animal origin. The genes encoding resistance to these cephalosporins are transferrable and often linked to other resistance genes. Systemic use of third and fourth cephalosporins selects for resistance, but co-selection by other antimicrobials is also likely to influence prevalence of resistance. Although there are many uncertainties, the potential consequences of a further increase of resistance to this critically important class of antimicrobials in bacteria colonising animals are serious. Measures to counter a further increase and spread of resistance among animals should therefore be considered.200920444006
662220.9999Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth-generation cephalosporins) are of especially great concern.200919231979
663030.9999Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.202133925810
663240.9999Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013-2017. Antimicrobial resistance is a major public health concern, and food systems are a crucial point in the epidemiology of these resistances. Among antimicrobials, critically important ones are therapeutic drugs that should be primarily safeguarded to allow successful outcomes against important bacterial infections in humans. The most important source of antimicrobial resistance has been recognized in the inappropriate use of antimicrobials in human and animal medicine, with farming being a critical stage. Products of animal origin are the link between animal and humans and can contribute to the spread of antimicrobial resistance, in particular through bacteria such as Enterobacteriaceae, commonly present in both animals' gut and food. Salmonella is an important member of this bacterial family due to its pathogenicity, its noteworthy prevalence and the frequent detection of resistance genes in different isolates. In the present systematic review, the distribution of antimicrobial resistance determinants among Salmonella enterica serovars in pigs, cattle and poultry production was investigated in the European context. A comprehensive literature search was carried out in three different databases, and 7955 papers were identified as relevant. After the different steps of the review process, 31 papers were considered eligible for data extraction to gain insight about sources and reservoirs for such genes. Results suggest that despite the increasing attention directed toward antimicrobial resistance in animal production, a wide plethora of genes still exist and further actions should be undertaken to face this challenge.201931442714
420450.9999Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.202337894239
663160.9999Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed.201829554996
662870.9999Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface.201931599545
420580.9999Public health risk of antimicrobial resistance transfer from companion animals. Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health.201727999066
420690.9999Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan. Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.201424387636
4212100.9999Review on the occurrence of the mcr-1 gene causing colistin resistance in cow's milk and dairy products. Both livestock farmers and the clinic use significant amount of antibiotics worldwide, in many cases the same kind. Antibiotic resistance is not a new phenomenon, however, it is a matter of concern that resistance genes (mcr - Mobilized Colistin Resistance - genes) that render last-resort drugs (Colistin) ineffective, have already evolved. Nowadays, there is a significant consumption of milk and dairy products, which, if not treated properly, can contain bacteria (mainly Gram-negative bacteria). We collected articles and reviews in which Gram-negative bacteria carrying the mcr-1 gene have been detected in milk, dairy products, or cattle. Reports have shown that although the incidence is still low, unfortunately the gene has been detected in some dairy products on almost every continent. In the interest of our health, the use of colistin in livestock farming must be banned as soon as possible, and new treatments should be applied so that we can continue to have a chance in fighting multidrug-resistant bacteria in human medicine.202133898852
6626110.9999Multidrug-resistant pathogens in the food supply. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.201525621383
4183120.9999Human health impact from antimicrobial use in food animals. There is accumulating evidence that the use of antimicrobials in food-producing animals has adverse human health consequences. The use of antibiotics in food animals selects for resistant pathogens and resistance genes that may be transferred to humans through the consumption or handling of foods of animal origin. Recent studies have demonstrated that antimicrobial-resistance among foodborne bacteria may cause excess cases of illness, prolonged duration of illness, and increased rates of bacteremia, hospitalization, and death. The continued availability of safe and effective antimicrobials for humans and animals depends upon the responsible use of these products.200415620055
4213130.9999Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU. The potential for transmission of antibiotic-resistant enteric zoonotic bacteria from animals to humans has been a public health concern for several decades. Bacteria carrying antibiotic resistance genes found in the intestinal tract of food animals can contaminate carcasses and may lead to food-borne disease in humans that may not respond to antibiotic treatment. It is consequently important to monitor changes in antimicrobial susceptibility of zoonotic and commensal organism; in this context, there are a number of veterinary monitoring programmes that collect bacteria in food-producing animals at slaughter and determine their susceptibility against antibiotics relevant for human medicine. The data generated are part of the risk analysis for potential food-borne transmission of resistance. There has been much debate about the use of fluoroquinolones in veterinary medicine, and so, this review will consider the fluoroquinolone data from two surveys and compare them to national surveillance programmes. At the outset, it must be pointed out that there is, however, a lack of agreement between several programmes on what is meant by the term 'fluoroquinolone resistance' through use of different definitions of resistance and different resistance breakpoints. An additional aim of this paper is to clarify some of those definitions. Despite the debate about the contribution of antibiotic use in veterinary medicine to the overall resistance development in human pathogens, the data suggest that clinical resistance to fluoroquinolones in Escherichia coli and nontyphoidal Salmonella is generally uncommon, except for a few countries. Ongoing surveillance will continue to monitor the situation and identify whether this situation changes within the respective animal populations. For the benefit of both the epidemiologist and the clinician, it would be strongly advantageous that national monitoring surveys report both percentages of clinical resistance and decreased susceptibility.201222066763
3943140.9999Quinolone resistance in the food chain. Antimicrobials are used in pet animals and in animal husbandry for prophylactic and therapeutic reasons and also as growth promoters, causing selective pressure on bacteria of animal origin. The impact of quinolones or quinolone-resistant bacteria on the management of human infections may be associated with three different scenarios. (i) Quinolone-resistant zoonotic bacterial pathogens are selected and food is contaminated during slaughter and/or preparation. (ii) Quinolone-resistant bacteria non-pathogenic to humans are selected in the animal. When the contaminated food is ingested, the bacteria may transfer resistance determinants to other bacteria in the human gut (commensal and potential pathogens). And (iii) quinolones remain in residues of food products, which may allow the selection of antibiotic-resistant bacteria after the food is consumed. In this review, we analyse the abovementioned aspects, emphasising the molecular basis of quinolone resistance in Escherichia coli, Salmonella spp. and Campylobacter spp.200818308515
4210150.9999Epidemiology of resistance to antibiotics. Links between animals and humans. An inevitable side effect of the use of antibiotics is the emergence and dissemination of resistant bacteria. Most retrospective and prospective studies show that after the introduction of an antibiotic not only the level of resistance of pathogenic bacteria, but also of commensal bacteria increases. Commensal bacteria constitute a reservior of resistance genes for (potentially) pathogenic bacteria. Their level of resistance is considered to be a good indicator for selection pressure by antibiotic use and for resistance problems to be expected in pathogens. Resistant commensal bacteria of food animals might contaminate, like zoonotic bacteria, meat (products) and so reach the intestinal tract of humans. Monitoring the prevalence of resistance in indicator bacteria such as faecal Escherichia coli and enterococci in different populations, animals, patients and healthy humans, makes it feasible to compare the prevalence of resistance and to detect transfer of resistant bacteria or resistance genes from animals to humans and vice versa. Only in countries that use or used avoparcin (a glycopeptide antibiotic, like vancomycin) as antimicrobial growth promoter (AMGP), is vancomycin resistance common in intestinal enterococci, not only in exposed animals, but also in the human population outside hospitals. Resistance genes against antibiotics, that are or have only been used in animals, i.e. nourseothricin, apramycin etc. were found soon after their introduction, not only in animal bacteria but also in the commensal flora of humans, in zoonotic pathogens like salmonellae, but also in strictly human pathogens, like shigellae. This makes it clear that not only clonal spread of resistant strains occurs, but also transfer of resistance genes between human and animal bacteria. Moreover, since the EU ban of avoparcin, a significant decrease has been observed in several European countries in the prevalence of vancomycin resistant enterococci in meat (products), in faecal samples of food animals and healthy humans, which underlines the role of antimicrobial usage in food animals in the selection of bacterial resistance and the transport of these resistances via the food chain to humans. To safeguard public health, the selection and dissemination of resistant bacteria from animals should be controlled. This can only be achieved by reducing the amounts of antibiotics used in animals. Discontinuing the practice of routinely adding AMGP to animal feeds would reduce the amounts of antibiotics used for animals in the EU by a minimum of 30% and in some member states even by 50%.200010794955
4211160.9999Monitoring of antimicrobial resistance among food animals: principles and limitations. Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance are essential to determine the most important areas for intervention and to monitor the effects of interventions. When designing a monitoring programme it is important to decide on the purpose of the programme. Thus, there are major differences between programmes designed to detect changes in a national population, individual herds or groups of animals. In addition, programmes have to be designed differently according to whether the aim is to determine changes in resistance for all antimicrobial agents or only the antimicrobial agents considered most important in relation to treatment of humans. In 1995 a continuous surveillance for antimicrobial resistance among bacteria isolated from food animals was established in Denmark. Three categories of bacteria, indicator bacteria, zoonotic bacteria and animal pathogens are continuously isolated from broilers, cattle and pigs and tested for susceptibility to antimicrobial agents used for therapy and growth promotion by disc diffusion or minimal inhibitory concentration determinations. This programme will only detect changes on a national level. However, isolating the bacteria and testing for several antimicrobial agents will enable us to determine the effect of linkage of resistance. Since 1995 major differences in the consumption pattern of different antimicrobial agents have occurred in Denmark. The Danish monitoring programme has enabled us to determine the effect of these changes on the occurrence of resistance. The Danish monitoring is, however, not suited to determine changes on a herd level or to detect emergence of new types of resistance only occurring at a low level.200415525370
4334170.9999Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance.199910493603
4202180.9999Surveillance of antimicrobial resistance in humans, food stuffs and livestock in Denmark. A general increase in antimicrobial resistance among pathogenic bacteria is causing concern worldwide that the widespread use of antimicrobial agents in animal production may promote the development of resistant bacteria or resistance genes that can be tr199712631822
3896190.9998Antimicrobial resistance genes in bacteria from animal-based foods. Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.202032762867