Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
419601.0000Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.202236065433
419510.9999Vancomycin drug resistance, an emerging threat to animal and public health. The need to supply quality food for the growing human population has led to the revolutionization of food production and processing in recent years. Meanwhile, food production sources are at risk of microbial attack, while the use of antibiotics to counter them is posing another threat to food safety and security. Vancomycin was used as the first line of defense against multiple drug-resistant bacteria salient of which is methicillin-resistant S. aureus. The emergence of the vancomycin resistance gene in bacteria impairs the efficacy of antibiotics on the one hand while its harmful residues impart food safety concerns on the other. Currently, a novel set of resistance genes "Van cluster" is circulating in a wider range of bacteria. Considerable economic losses in terms of low production and food safety are associated with this emerging resistance. The current review focuses on the emergence of vancomycin resistance and its impact on food safety. The review proposes the need for further research on the probable routes, mechanisms, and implications of vancomycin resistance from animals to humans and vice versa.202236387389
419720.9999Antibiotic-resistant bacteria: a challenge for the food industry. Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.201323035919
419930.9999Resistance in bacteria of the food chain: epidemiology and control strategies. Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products. The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.200818847409
671240.9999Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine. The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial-human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed.202540732727
412450.9999A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals. In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations.200212385693
419460.9999Do nonclinical uses of antibiotics make a difference? An increasing range of antibacterial compounds is being used for nonclinical purposes, especially in the fields of animal husbandry and fish farming. As in human medicine, exposure to antibiotics has lead to the emergence of antibiotic-resistant bacteria in animal populations. The potential impact of antibiotic use in animals on human health and the management of clinical infections in humans is discussed in light of growing evidence to suggest that "new" resistance genes and multiresistant pathogens with increased pathogenicity are emerging in food animals as a direct consequence of antibiotic exposure.19947963441
419870.9999Antimicrobial resistance in bacteria from food-producing animals. risk management tools and strategies. The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals.200415525378
664280.9999A Review of Current Bacterial Resistance to Antibiotics in Food Animals. The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.202235633728
418890.9999Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.201222849275
4078100.9999Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while at the same time limiting the risks from antibiotic-resistant bacteria.200717600481
4215110.9999Antibiotic usage in animals: impact on bacterial resistance and public health. Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine.199910551432
6711120.9999Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.202236726644
6638130.9999Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Antibiotic resistance is a global public health problem that requires our attention. Indiscriminate antibiotic use is a major contributor in the introduction of selective pressures in our natural environments that have significantly contributed in the rapid emergence of antibiotic-resistant microbial strains. The use of probiotics in lieu of antibiotic therapy to address certain health conditions in both animals and humans may alleviate these antibiotic-mediated selective pressures. Probiotic use is defined as the actual application of live beneficial microbes to obtain a desired outcome by preventing diseased state or improving general health. Multiple studies have confirmed the beneficial effects of probiotic use in the health of both livestock and humans. As such, probiotics consumption is gaining popularity worldwide. However, concerns have been raised in the use of some probiotics strains that carry antibiotic resistance genes themselves, as they have the potential to pass the antibiotic resistance genes to pathogenic bacteria through horizontal gene transfer. Therefore, with the current public health concern on antibiotic resistance globally, in this review, we underscore the need to screen probiotic strains that are used in both livestock and human applications to assure their safety and mitigate their potential in significantly contributing to the spread of antibiotic resistance genes in our natural environments.201628018315
4193140.9999Use of antimicrobial agents in veterinary medicine and food animal production. Antimicrobial resistance is a growing area of concern in both human and veterinary medicine. This review presents an overview of the use of antimicrobial agents in animals for therapeutic, metaphylactic, prophylactic and growth promotion purposes. In addition, factors favouring resistance development and transfer of resistance genes between different bacteria, as well as transfer of resistant bacteria between different hosts, are described with particular reference to the role of animals as a reservoir of resistance genes or resistant bacterial pathogens which may cause diseases in humans.200111397611
6637150.9999Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. The rapid proliferation of antimicrobial resistance has emerged as one of the most pressing animal and public health challenges of our time. Probiotics, extensively employed in human and veterinary medicine, are instrumental in maintaining a balanced microbiome and mitigating its disruption during antibiotic therapy. While their numerous benefits are well documented, probiotics also present potential risks, notably the capacity to harbor antimicrobial resistance genes. This genetic reservoir could contribute to the emergence and spread of antimicrobial resistance by facilitating the horizontal transfer of resistance genes to pathogenic bacteria within the gut. This review critically examines the presence of antimicrobial resistance genes in commonly used probiotic strains, explores the underlying mechanisms of resistance, and provides a balanced analysis of the benefits and risks associated with their use. By addressing these dual aspects, this paper highlights the need for vigilant evaluation of probiotics to preserve their therapeutic potential while minimizing public health risks.202540266902
4189160.9999Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life.200617094710
4201170.9999Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Resistance to therapeutic antimicrobial agents is recognized as a growing problem for both human and veterinary medicine, and the need to address the issue in both of these linked domains is a current priority in public policy. Efforts to limit antimicrobial resistance (AMR) on farms have so far focused on control of the supply and use of antimicrobial drugs, plus husbandry measures to reduce infectious disease. In the United Kingdom and some other countries, substantial progress has been made recently against targets on agricultural antimicrobial drug use. However, evidence suggests that resistant pathogenic and commensal bacteria can persist and spread within and between premises despite declining or zero antimicrobial drug use. Reasons for this are likely complex and varied but may include: bacterial adaptations to ameliorate fitness costs associated with maintenance and replication of resistance genes and associated proteins, horizontal transmission of genetic resistance determinants between bacteria, physical transfer of bacteria via movement (of animals, workers, and equipment), ineffective cleaning and disinfection, and co-selection of resistance to certain drugs by use of other antimicrobials, heavy metals, or biocides. Areas of particular concern for public health include extended-spectrum cephalosporinases and fluoroquinolone resistance among Enterobacteriaceae, livestock-associated methicillin-resistant Staphylococcus aureus, and the emergence of transmissible colistin resistance. Aspects of biosecurity have repeatedly been identified as risk factors for the presence of AMR on farm premises, but there are large gaps in our understanding of the most important risk factors and the most effective interventions. The present review aims to summarize the present state of knowledge in this area, from a European perspective.201933336931
6710180.9999Potential of the livestock industry environment as a reservoir for spreading antimicrobial resistance. Antimicrobial resistance (AMR) in bacteria is a global issue requiring serious attention and management. The indiscriminate use of antibiotics in livestock for growth promotion, disease prevention, and treatment has led to the dissemination of AMR bacteria and resistance genes into the environment. In addition, unethical antibiotic sales without prescriptions, poor sanitation, and improper disposal cause significant amounts of antibiotics used in livestock to enter the environment, causing the emergence of resistant bacteria. Intensive livestock farming is an important source of AMR genes, environmental bacteria contamination, and possible transfer to human pathogens. Bacteria intrinsically antibiotic resistant, which are independent of antibiotic use, further complicate AMR and increase the risk of morbidity and mortality following infections by AMR bacteria. Escherichia coli, Salmonella spp., and Staphylococcus spp. are commonly found in livestock that carry resistance genes and have a risk of human infection. The impact of AMR, if left unchecked, could lead to substantial public health burdens globally, with a predicted mortality rate higher than cancer by 2050. "One Health" integrates strategies across human, animal, and environmental health domains, including improving antibiotic stewardship in livestock, preventing infection, and raising awareness regarding the judicious use of antibiotics. The use of antibiotic alternatives, such as prebiotics, probiotics, bacteriophages, bacteriocins, and vaccinations, to control or prevent infections in livestock will help to avoid over-reliance on antibiotics. Coordinated international actions are needed to mitigate the spread of AMR through improved regulations, technology improvements, and awareness campaigns.202540201833
4192190.9999Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.201323805136