# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 418 | 0 | 1.0000 | Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Genes conferring resistance to aminoglycoside-aminocyclitol antibiotics in three group D streptococcal strains, Streptococcus faecalis JH1 and JH6 and S. faecium JH7, and to chloramphenicol in JH6 are carried by plasmids that can transfer to other S. faecalis cells. The aminoglycoside resistance is mediated by constitutively synthesized phosphotransferase enzymes that have substrate profiles very similar to those of aminoglycoside phosphotransferases found in gram-negative bacteria. Phosphorylation probably occurs at the aminoglycoside 3'-hydroxyl group. Plasmid-borne streptomycin resistance is due to production of the enzyme streptomycin adenylyltransferase, which, as in staphylococci and in contrast to that detected in gram-negative bacteria, is less effective against spectinomycin as substrate. Resistance to chloramphenicol is by enzymatic acetylation. The chloramphenicol acetyltransferase is inducible and bears a close resemblance to the type D chloramphenicol acetyltransferase variant from staphylococci. | 1978 | 96732 |
| 4503 | 1 | 0.9995 | Evolution and transfer of aminoglycoside resistance genes under natural conditions. 3'-Aminoglycoside phosphotransferases [APH(3')] were chosen as a model to study the evolution and the transfer of aminoglycoside resistance genes under natural conditions. Comparison of the amino acid sequences of APH(3') enzymes from transposons Tn903 (type I) and Tn5 (type II) detected in Gram-negative bacteria, from the Gram-positive Staphylococcus and Streptococcus (type III), from the butirosin-producing Bacillus circulans (type IV) and from a neomycin-producing Streptomyces fradiae (type V) indicate that they have diverged from a common ancestor. These structural data support the hypothesis that the antibiotic-producing strains were the source of certain resistance determinants. We have shown that kanamycin resistance in Campylobacter coli BM2509 was due to the synthesis of an APH(3')-III, an enzyme not detected previously in a Gram-negative bacterium. The genes encoding APH(3')-III in Streptococcus and Campylobacter are identical. These findings constitute evidence for a recent in-vivo transfer of DNA between Gram-positive and Gram-negative bacteria. | 1986 | 3027020 |
| 4502 | 2 | 0.9995 | Resistome in Streptomyces rimosus - A Reservoir of Aminoglycoside Antibiotics Resistance Genes. Investigation of aminoglycoside acetyltransferases in actinobacteria of the genus Streptomyces is an integral part of the study of soil bacteria as the main reservoir and possible source of drug resistance genes. Previously, we have identified and biochemically characterized three aminoglycoside phosphotransferases, which cause resistance to kanamycin, neomycin, paromomycin, streptomycin, and hygromycin B in the strain Streptomyces rimosus ATCC 10970 (producing oxytetracycline), which is resistant to most natural aminoglycoside antibiotics. In the presented work, it was shown that the resistance of this strain to other AGs is associated with the presence of the enzyme aminoglycoside acetyltransferase, belonging to the AAC(2') subfamily. Induction of the expression of the gene, designated by us as aac(2')-If, in Escherichia coli cells determines resistance to a wide range of natural aminoglycoside antibiotics (neomycin, gentamicin, tobramycin, sisomycin, and paromomycin) and increases minimum inhibitory concentrations of these antibiotics. | 2023 | 37748869 |
| 4504 | 3 | 0.9995 | Resistance of enterococci to aminoglycosides and glycopeptides. High-level resistance to aminoglycosides in enterococci often is mediated by aminoglycoside-modifying enzymes, and the corresponding genes generally are located on self-transferable plasmids. These enzymes are similar to those in staphylococci but differ from the modifying enzymes of gram-negative bacteria. Three classes of enzymes are distinguished, depending upon the reaction catalyzed. All but amikacin and netilmicin confer high-level resistance to the antibiotics that are modified in vitro. However, the synergistic activity of these last two antibiotics in combination with beta-lactam agents can be suppressed, as has always been found in relation to high-level resistance to the aminoglycosides. Acquisition of glycopeptide resistance by enterococci recently was reported. Strains of two phenotypes have been distinguished: those that are resistant to high levels of vancomycin and teicoplanin and those that are inducibly resistant to low levels of vancomycin and susceptible to teicoplanin. In strains of Enterococcus faecium highly resistant to glycopeptides, we have characterized plasmids ranging from 34 to 40 kilobases that are often self-transferable to other gram-positive organisms. The resistance gene vanA has been cloned, and its nucleotide sequence has been determined. Hybridization experiments showed that this resistance determinant is present in all of our enterococcal strains that are highly resistant to glycopeptides. The vanA gene is part of a cluster of plasmid genes responsible for synthesis of peptidoglycan precursors containing a depsipeptide instead of the usual D-alanyl-D-alanine terminus. Reduced affinity of glycopeptides to these precursors confers resistance to the antibiotics. | 1992 | 1520800 |
| 5963 | 4 | 0.9994 | Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli. | 1998 | 9503630 |
| 4505 | 5 | 0.9994 | Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. Resistance to macrolide, lincosamide and streptogramin antibiotics is due to alteration of the target site or detoxification of the antibiotic. Postranscriptional methylation of 23S ribosomal rRNA confers resistance to macrolide (M), lincosamide (L) and streptogramin (S) B-type antibiotics, the so-called MLSB phenotype. Several classes of rRNA methylases conferring resistance to MLSB antibiotics have been characterized in Gram-positive cocci, in Bacillus spp, and in strains of actinomycetes producing erythromycin. The enzymes catalyze N6-dimethylation of an adenine residue situated in a highly conserved region of prokaryotic 23S rRNA. In this review, we compare the amino acid sequences of the rRNA methylases and analyze the codon usage in the corresponding erm (erythromycin resistance methylase) genes. The homology detected at the protein level is consistent with the notion that an ancestor of the erm genes was implicated in erythromycin resistance in a producing strain. However, the rRNA methylases of producers and non-producers present substantial sequence diversity. In Gram-positive bacteria the preferential codon usage in the erm genes reflects the guanosine plus cytosine content of the chromosome of the host. These observations suggest that the presence of erm genes in these micro-organisms is ancient. By contrast, it would appear that enterobacteria have acquired only recently an rRNA methylase gene of the ermB class from a Gram-positive coccus since the genes isolated in Escherichia coli and in Gram-positive cocci are highly homologous (homology greater than 98%) and present a codon usage typical of the latter micro-organisms. As opposed to the MLSB phenotype which results from a single biochemical mechanism, inactivation of structurally related antibiotics of the MLS group involves synthesis of various other enzymes. In enterobacteria, resistance to erythromycin and oleandomycin is due to production of erythromycin esterases which hydrolyze the lactone ring of the 14-membered macrolides. We recently reported the nucleotide sequence of ereA and ereB (erythromycin resistance esterase) genes which encode erythromycin esterases type I and II, respectively. The amino acid sequences of the two isozymes do not exhibit statistically significant homology. Analysis of codon usage in both genes suggests that esterase type I is indigenous to E. coli, whereas the type II enzyme was acquired by E. coli from a phylogenetically remote micro-organism. Inactivation of lincosamides, first reported in staphylococci and lactobacilli of animal origin, was also recently detected in Gram-positive cocci isolated from humans.(ABSTRACT TRUNCATED AT 400 WORDS) | 1987 | 3326871 |
| 3052 | 6 | 0.9993 | Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by sigma 55 of B. subtilis RNA polymerase. | 1983 | 6410152 |
| 4499 | 7 | 0.9993 | Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material. | 1987 | 3032095 |
| 4474 | 8 | 0.9993 | Mechanisms of resistance and resistance transfer in anaerobic bacteria: factors influencing antimicrobial therapy. The resistance of anaerobic bacteria to a number of antimicrobial agents has an impact on the selection of appropriate therapy for infections caused by these pathogens. Resistance to penicillin in Bacteroides fragilis has long been recognized. Most resistance is due to chromosomal beta-lactamases that are cephalosporinases. Two new enzymes that inactivate the ureidopenicillins and cefoxitin have been described in B. fragilis. The most common mechanisms of cefoxitin resistance is by the blocking of penetration of the drug into the periplasmic space. The transfer of beta-lactamase and penicillinase and of cefoxitin resistance has been demonstrated. Penicillin resistance in other Bacteroides is mediated by a penicillinase. Chloramphenicol resistance is mediated by a chloramphenicol acetyltransferase and by nitroreduction in anaerobic bacteria. Anaerobic bacteria are resistant to aminoglycosides because these organisms lack the oxidative transport system for intracellular drug accumulation. Metronidazole resistance, which is rarely encountered, is mediated by a decrease in nitroreduction of the compound to the active agent. Clindamycin-erythromycin resistance in B. fragilis is probably similar to macrolide-lincosamide-streptogramin resistance in aerobic bacteria. Two transfer factors, pBFTM10 and pBF4, which confer resistance to clindamycin have been described; the resistance determinant on them is widely distributed in nature. Tetracyline resistance in B. fragilis is mediated by a block in uptake of the drug. Transfer of tetracycline resistance is common; however, no transfer factor has been isolated. Transfer has been proposed to occur via a conjugal transposon. The special characteristics of the infected site influence the outcome of antimicrobial therapy, particularly in abscesses.(ABSTRACT TRUNCATED AT 250 WORDS) | 1984 | 6326243 |
| 5991 | 9 | 0.9992 | Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. A strain of Listeria monocytogenes, isolated from a patient with meningoencephalitis, was resistant to chloramphenicol, erythromycin, streptomycin, and tetracycline. The genes conferring resistance to these antibiotics were carried by a 37-kb plasmid, pIP811, that was self-transferable to other L monocytogenes cells, to enterococci-streptococci, and to Staphylococcus aureus. The efficacy of transfer and the stability of pIP811 were higher in enterococci-streptococci than in the other gram-positive bacteria. As indicated by nucleic acid hybridisation, the genes in pIP811 conferring resistance to chloramphenicol, erythromycin, and streptomycin were closely related to plasmid-borne determinants that are common in enterococci-streptococci. Plasmid pIP811 shared extensive sequence homology with pAM beta 1, the prototype broad host range resistance plasmid in these two groups of gram-positive cocci. These results suggest that emergence of multiple antibiotic resistance in Listeria spp is due to acquisition of a replicon originating in enterococci-streptococci. The dissemination of resistance to other strains of L monocytogenes is likely. | 1990 | 1972210 |
| 4475 | 10 | 0.9992 | Clindamycin resistance in anaerobic bacteria. Knowledge of the mechanisms of antimicrobial resistance and resistance transfer in anaerobic bacteria has been gained over the past several years. There is widespread resistance to the beta-lactam antibiotics in the B. fragilis group of organisms and there is emerging penicillin resistance in other Bacteroides species. These resistances are usually mediated by chromosomal beta-lactamases. There have been two new beta-lactamases described in Bacteroides; a penicillinase which inactivates ureidopenicillins and another that inactivates cefoxitin. The transfer of the common beta-lactamase, penicillinase, and cefoxitin resistance has been documented in B. fragilis. The mechanism of tetracycline resistance in B. fragilis is the lack of accumulation of intracellular drug; the resistance is widespread in anaerobic bacteria and is seen in two-thirds of the B. fragilis strains. The transfer of tetracycline resistance is common, however, no transfer factor has yet been isolated. Clindamycin-erythromycin resistance in Bacteroides was first recognized in the mid-1970s and transferable resistance was described in 1979. The mechanism of resistance is probably similar to macrolide-lincosamide-streptinogramin-resistance seen in aerobic bacteria. Two clindamycin resistance transfer factors, pBFTM10 and pIP410 (pBF4) have been described. A common resistance determinant found both on plasmids and chromosomes is widely distributed in nature and it probably resides on a transposon. DNA homology studies indicate that there is more than one type of clindamycin resistance in Bacteroides; a newly recognized clindamycin resistance determinant is transferable. Local outbreaks of clindamycin resistance have been noted in the United States and in Europe. The susceptibility of Bacteroides in the United States in 1983 from a multi-center study reveals a 5% incidence of resistance in B. fragilis and 1% in Bacteroides species. The rate of clindamycin resistance has remained steady over the past three years in the Bacteroides fragilis group. | 1984 | 6598519 |
| 4501 | 11 | 0.9992 | A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group. | 1992 | 1339256 |
| 4419 | 12 | 0.9992 | Epidemiology of tetracycline-resistance determinants. Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline. | 1994 | 7850200 |
| 207 | 13 | 0.9992 | Synthesis of an amphiphilic vancomycin aglycone derivative inspired by polymyxins: overcoming glycopeptide resistance in Gram-positive and Gram-negative bacteria in synergy with teicoplanin in vitro. Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria. | 2022 | 36463278 |
| 4497 | 14 | 0.9992 | Detection and expression analysis of tet(B) in Streptococcus oralis. Tetracycline resistance can be achieved through tet genes, which code for efflux pumps, ribosomal protection proteins and inactivation enzymes. Some of these genes have only been described in either Gram-positive or Gram-negative bacteria. This is the case of tet(B), which codes for an efflux pump and, so far, had only been found in Gram-negative bacteria. In this study, tet(B) was detected in two clinical Streptococcus oralis strains isolated from the gingival sulci of two subjects. In both cases, the gene was completely sequenced, yielding 100% shared identity and coverage with other previously published sequences of tet(B). Moreover, we studied the expression of tet(B) using RT-qPCR in the isolates grown with and without tetracycline, detecting constitutive expression in only one of the isolates, with no signs of expression in the other one. This is the first time that the presence and expression of the tet(B) gene has been confirmed in Gram-positive bacteria, which highlights the potential of the genus Streptococcus to become a reservoir and a disseminator of antibiotic resistance genes in an environment so prone to horizontal gene transfer as is the oral biofilm. | 2019 | 31448060 |
| 3659 | 15 | 0.9992 | Resistance to vancomycin and teicoplanin: an emerging clinical problem. Vancomycin and teicoplanin are glycopeptides active against a wide range of gram-positive bacteria. For 30 years following the discovery of vancomycin in 1956, vancomycin resistance was not detected among normally susceptible bacteria recovered from human specimens. Since 1986, however, bacteria resistant to vancomycin or teicoplanin or both have been described. Strains of the genera Leuconostoc, Lactobacillus, Pediococcus, and Erysipelothrix seem inherently resistant to glycopeptides. Species and strains of enterococci and coagulase-negative staphylococci appear to have acquired or developed resistance. There are at least two categories of glycopeptide resistance among enterococci, characterized by either high-level resistance to vancomycin (MIC, greater than or equal to 64 mg/liter) and teicoplanin (MIC, greater than or equal to 8 mg/liter) or lower-level vancomycin resistance (MIC, 32 to 64 mg/liter) and teicoplanin susceptibility (MIC, less than or equal to 1 mg/liter). The two categories appear to have similar resistance mechanisms, although genetic and biochemical studies indicate that they have arisen independently. Among coagulase-negative staphylococci, strains for which vancomycin MICs are up to 20 mg/liter or teicoplanin MICs are 16 to 32 mg/liter have been reported, but cross-resistance between these glycopeptides varies. The selective advantage accorded to glycopeptide-resistant bacteria and the observation that high-level resistance in enterococci is transferable suggest that such resistance may be expected to increase in incidence. Clinicians and microbiologists need to be aware of this emerging problem. | 1990 | 2143434 |
| 4498 | 16 | 0.9992 | A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated. | 2008 | 18024520 |
| 4462 | 17 | 0.9991 | Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Salmonella typhimurium phage type DT104 has become an important emerging pathogen. Isolates of this phage type often possess resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT resistance). The mechanism by which DT104 has accumulated resistance genes is of interest, since these genes interfere with treatment of DT104 infections and might be horizontally transferred to other bacteria, even to unrelated organisms. Previously, several laboratories have shown that the antibiotic resistance genes of DT104 are chromosomally encoded and involve integrons. The antibiotic resistance genes conferring the ACSSuT-resistant phenotype have been cloned and sequenced. These genes are grouped within two district integrons and intervening plasmid-derived sequences. This sequence is potentially useful for detection of multiresistant DT104. | 1999 | 10103189 |
| 5951 | 18 | 0.9991 | A novel plasmid from Aerococcus urinaeequi of porcine origin co-harboring the tetracycline resistance genes tet(58) and tet(61). Tetracyclines are the broad-spectrum agents used in veterinary medicine and food animal production. Known mechanisms of tetracycline resistance include ribosome protection, active efflux and enzymatic inactivation. However, the presence of two different tet genes conferring different resistance mechanisms on the same plasmid has rarely been reported. In this study, we identified the tandem tetracycline resistance genes tet(61)-tet(58) on the novel plasmid pT4303. These tet genes were identified for the first time in Aerococcus urinaeequi. Reduced susceptibility to doxycycline was observed in S. aureus RN4220 harboring tet(61) when an extra tet(58) was expressed. Plasmid pT4303 was electrotransformed into S. aureus RN4220, E. faecalis JH2-2, S. suis BAA and E. coli DH5α and conferred tetracycline resistance (MIC ≥ 16) in both Gram-positive and Gram-negative bacteria, assuming that it might serve as a vehicle for the dissemination of the tetracycline resistance genes tet(61) and tet(58). | 2021 | 33866063 |
| 4420 | 19 | 0.9991 | New perspectives in tetracycline resistance. Until recently, tetracycline efflux was thought to be the only mechanism of tetracycline resistance. As studies of tetracycline resistance have shifted to bacteria outside the Enterobacteriaceae, two other mechanisms of resistance have been discovered. The first is ribosomal protection, a type of resistance which is found in mycoplasmas, Gram-positive and Gram-negative bacteria and may be the most common type of tetracycline resistance in nature. The second is tetracycline modification, which has been found only in two strains of an obligate anaerobe (Bacteroides). Recent studies have also turned up such anomalies as a tetracycline efflux pump which does not confer resistance to tetracycline and a gene near the replication origin of a tetracycline-sensitive Bacillus strain which confers resistance when it is amplified. | 1990 | 2181236 |