Use of antimicrobial agents in aquaculture. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
418801.0000Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.201222849275
418911.0000Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life.200617094710
419020.9999Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry.201424705326
421530.9999Antibiotic usage in animals: impact on bacterial resistance and public health. Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine.199910551432
419440.9999Do nonclinical uses of antibiotics make a difference? An increasing range of antibacterial compounds is being used for nonclinical purposes, especially in the fields of animal husbandry and fish farming. As in human medicine, exposure to antibiotics has lead to the emergence of antibiotic-resistant bacteria in animal populations. The potential impact of antibiotic use in animals on human health and the management of clinical infections in humans is discussed in light of growing evidence to suggest that "new" resistance genes and multiresistant pathogens with increased pathogenicity are emerging in food animals as a direct consequence of antibiotic exposure.19947963441
412350.9999The Invisible Threat of Antibiotic Resistance in Food. The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.202540149061
397060.9999Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.202235028843
418770.9999Human health consequences of use of antimicrobial agents in aquaculture. Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health.200919772389
412480.9999A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals. In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations.200212385693
671290.9999Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine. The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial-human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed.202540732727
4192100.9999Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.201323805136
4053110.9999Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. The concern over antibiotic-resistant bacteria producing human infections that are difficult to treat has led to a proliferation of studies in recent years investigating resistance in livestock, food products, the environment and people, as well as in the mechanisms of transfer of the genetic elements of resistance between bacteria, and the routes, or risk pathways, by which the spread of resistance might occur. The possibility of transfer of resistant genetic elements between bacteria in mixed populations adds many additional and complex potential routes of spread. There is now considerable evidence that transfer of antimicrobial resistance from food-producing animals to humans directly via the food chain is a likely route of spread. The application of animal wastes to farmland and subsequent leaching into watercourses has also been shown to lead to many potential, but less well-documented, pathways for spread. Often, however, where contamination of water sources, processed foods, and other environmental sites is concerned, specific routes of circulation are unclear and may well involve human sources of contamination. Examination of water sources in particular may be difficult due to dilution and their natural flow. Also, as meat is comparatively easy to examine, and is frequently suspected of being a source of spread, there is some bias in favour of studying this vehicle. Such complexities mean that, with the evidence currently available, it is not possible to prioritise the importance of potential risk pathways and circulation routes.201222849279
4198120.9999Antimicrobial resistance in bacteria from food-producing animals. risk management tools and strategies. The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals.200415525378
4115130.9999Antibiotic Use for Growth Promotion in Animals: Ecologic and Public Health Consequences. Antibiotics have successfully treated infectious diseases in man, animals and agricultural plants. However, one consequence of usage at any level, subtherapeutic or therapeutic, has been selection of microorganisms resistant to these valuable agents. Today clinicians worldwide face singly resistant and multiply resistant bacteria which complicate treatment of even common infectious agents. This situation calls for a critical evaluation of the numerous ways in which antibiotics are being used so as to evaluate benefits and risks. About half of the antibiotics produced in the United States arc used in animals, chiefly in subtherapeutic amounts for growth promotion. This usage is for prolonged periods leading to selection of multiply-resistant bacteria which enter a common environmental pool. From there, resistance determinants from different sources spread from one bacterium to another, from one animal host to another, from one area to another. The same resistance determinants have been traced to many different genera associated with humans, animals and foods where they pose a continued threat to public health. Since alternative measures for growth promotion, such as antimicrobials which are not used for human therapy and which do not select for multiple-resistances are available, their use, instead of antibiotics, would remove a major factor contributing to the environmental pool of transferable resistance genes.198730965484
4335140.9999Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different European countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly and in general decreases in resistance have followed. Guidelines for prudent use of antimicrobial agents may help to slow down the selection for resistance and should be based on knowledge regarding the normal susceptibility patterns of the causative agents and take into account the potential problems for human health. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection of resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine.200515755309
4117150.9999Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Several lines of evidence indicate that the use of anti-microbial agents in food animals is associated with anti-microbial resistance among bacteria isolated from humans. The use of anti-microbial agents in food animals is most clearly associated with anti-microbial resistance among Salmonella and Campylobacter isolated from humans, but also appears likely among enterococci, Escherichia coli and other bacteria. Evidence is also accumulating that the anti-microbial resistance among bacteria isolated from humans could be the result of using anti-microbial agents in food animals and is leading to human health consequences. These human health consequences include: (i) infections that would not have otherwise occurred and (ii) increased frequency of treatment failures and increased severity of infection. Increased severity of infection includes longer duration of illness, increased frequency of bloodstream infections, increased hospitalization and increased mortality. Continued work and research efforts will provide more evidence to explain the connection between the use of anti-microbial agents in food animals and anti-microbial-resistant infections in humans. One particular focus, which would solidify this connection, is to understand the factors that dictate spread of resistance determinants, especially resistant genes. With continued efforts on the part of the medical, veterinary and public health community, such research may contribute to more precise guidelines on the use of anti-microbials in food animals.200415525369
4055160.9999Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.201323711078
4095170.9999Antimicrobial resistance: more than 70 years of war between humans and bacteria. Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).202032954887
3984180.9999Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.202336851059
3991190.9999Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Biofilm-forming bacteria are ubiquitous in the environment and also include biofilm-forming pathogens. Environmental biofilms may form a reservoir for risk genes and may act as a challenge for human health. Examples of the health relevance of biofilms are the increase in antibiotic resistant bacteria hosted in biofilms in hospital and environment and consequently the interaction of these bacteria with human cells, e.g. in the immune system. Although data concerning the occurrence and spread of resistant bacteria within hospital care units are available, the fate of these bacteria in the environment and especially in the aquatic environment has barely been investigated. Once antibiotic resistant bacteria have entered the environment, a back coupling by ingestion or other possible entry into the host has to be prevented. Therefore a strategy to investigate paths of entry, accumulation and spread of resistant bacteria in environmental compartments has been developed using quantitative determination of genetic resistance determinants. Additionally a bacterial bioassay assessed bioeffectivity thresholds of low antibiotic concentrations. This approach enables an evaluation of the potential of contaminated waters to exert a selection pressure on bacterial communities and thus promote the persistence of resistant organisms. Completed with an indicator system for the identification of sources of multiresistant bacteria a concept for monitoring and evaluation of environmental compartments with respect to their potential of antibiotic resistance dissemination is suggested.200616705607