# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4149 | 0 | 1.0000 | Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Soil bacteria may contain antibiotic resistance genes responsible for different mechanisms that permit them to overcome the natural antibiotics present in the environment. This gene pool has been recently named the 'resistome', and its components can be mobilized into the microbial community affecting humans because of the participation of genetic platforms that efficiently facilitate the mobilization and maintenance of these resistance genes. Evidence for this transference has been suggested or demonstrated with newly identified widespread genes in multidrug-resistant bacteria. These resistance genes include those responsible for ribosomal methylases affecting aminoglycosides (armA, rtmB), methyltransferases affecting linezolid (cfr) or plasmid-mediated efflux pumps conferring low-level fluoroquinolone resistance (qepA), all of which are associated with antibiotic-producing bacteria. In addition, resistance genes whose ancestors have been identified in environmental isolates that are not recognized as antibiotic producers have also been recently detected. These include the qnr and the bla(CTX) genes compromising the activity of fluoroquinolones and extended-spectrum cephalosporins, respectively. The application of metagenomic tools and phylogenetic analysis will facilitate future identification of other new resistance genes and their corresponding ancestors in environmental bacteria, and will enable further exploration of the concept of the resistome as being a unique reservoir of antibiotic resistance genes and genetic elements participating in resistance gene transfer. | 2009 | 19220348 |
| 4152 | 1 | 0.9999 | Quinolone resistance: much more than predicted. Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones. | 2011 | 21687414 |
| 4150 | 2 | 0.9999 | The worldwide emergence of plasmid-mediated quinolone resistance. Fluoroquinolone resistance is emerging in gram-negative pathogens worldwide. The traditional understanding that quinolone resistance is acquired only through mutation and transmitted only vertically does not entirely account for the relative ease with which resistance develops in exquisitely susceptible organisms, or for the very strong association between resistance to quinolones and to other agents. The recent discovery of plasmid-mediated horizontally transferable genes encoding quinolone resistance might shed light on these phenomena. The Qnr proteins, capable of protecting DNA gyrase from quinolones, have homologues in water-dwelling bacteria, and seem to have been in circulation for some time, having achieved global distribution in a variety of plasmid environments and bacterial genera. AAC(6')-Ib-cr, a variant aminoglycoside acetyltransferase capable of modifying ciprofloxacin and reducing its activity, seems to have emerged more recently, but might be even more prevalent than the Qnr proteins. Both mechanisms provide low-level quinolone resistance that facilitates the emergence of higher-level resistance in the presence of quinolones at therapeutic levels. Much remains to be understood about these genes, but their insidious promotion of substantial resistance, their horizontal spread, and their co-selection with other resistance elements indicate that a more cautious approach to quinolone use and a reconsideration of clinical breakpoints are needed. | 2006 | 17008172 |
| 4151 | 3 | 0.9999 | Evolutionary relationships among genes for antibiotic resistance. The genes that determine resistance to antibiotics are commonly found encoded by extrachromosomal elements in bacteria. These were described first in Enterobacteriaceae and subsequently in a variety of other genera; their spread is associated with the increased use of antibiotics in human and animal medicine. Antibiotic-resistance genes that determine the production of enzymes which modify (detoxify) the antibiotics have been detected in antibiotic-producing organisms. It has been suggested that the producing strains provided the source of antibiotic-resistance genes that were then 'picked-up' by recombination. Recent studies of the nucleotide sequence of certain antibiotic-resistance genes indicate regions of strong homology in the encoded proteins. The implications of these similarities are discussed. | 1984 | 6559117 |
| 4147 | 4 | 0.9999 | Lack of evidence that DNA in antibiotic preparations is a source of antibiotic resistance genes in bacteria from animal or human sources. Although DNA encoding antibiotic resistance has been discovered in antibiotic preparations, its significance for the development of antibiotic resistance in bacteria is unknown. No phylogenetic evidence was obtained for recent horizontal transfer of antibiotic resistance genes from antibiotic-producing organisms to bacteria from human or animal sources. | 2004 | 15273135 |
| 4456 | 5 | 0.9999 | Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BACKGROUND: Predicting antibiotic resistance before it emerges at clinical settings constitutes a novel approach for preventing and fighting resistance of bacterial pathogens. To analyse the possibility that novel plasmid-encoded quinolone resistance determinants (Qnr) can emerge and disseminate among bacterial pathogens, we searched the presence of those elements in nearly 1000 bacterial genomes and metagenomes. RESULTS: We have found a number of novel potential qnr genes in the chromosomes of aquatic bacteria and in metagenomes from marine organisms. Functional studies of the Stenotrophomonas maltophilia Smqnr gene show that plasmid-encoded SmQnr confers quinolone resistance upon its expression in a heterologous host. CONCLUSION: Altogether, the data presented in our work support the notion that predictive studies on antibiotic resistance are feasible, using currently available information on bacterial genomes and with the aid of bioinformatic and functional tools. Our results confirm that aquatic bacteria can be the origin of plasmid-encoded Qnr, and highlight the potential role of S. maltophilia as a source of novel Qnr determinants. | 2008 | 18793450 |
| 4146 | 6 | 0.9999 | Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed. | 2022 | 36358142 |
| 9882 | 7 | 0.9999 | Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance. | 2018 | 29038087 |
| 4324 | 8 | 0.9999 | Characterization of Antibiotic Resistance in Shewanella Species: An Emerging Pathogen in Clinical and Environmental Settings. Antibiotic resistance is increasing at an alarming rate worldwide, in large part due to their misuse and improper disposal. Antibiotics administered to treat human and animal diseases, including feed supplements for the treatment or prevention of disease in farm animals, have contributed greatly to the emergence of a multitude of antibiotic-resistant pathogens. Shewanella is one of many bacteria that have developed antibiotic resistance, and in some species, multiple-antibiotic resistance (MAR). Shewanella is a rod-shaped, Gram-negative, oxidase-positive, and H(2)S-producing bacterium that is naturally found in the marine environment. In humans, Shewanella spp. can cause skin and soft tissue infections, septicemia, cellulitis, osteomyelitis, and ear and wound infections. Some Shewanella have been shown to be resistant to a variety of antibiotics, including beta-lactams, aminoglycoside, quinolones, third- or fourth-generation cephalosporins, and carbapenems, due to the presence of genes such as the bla(OXA)-class D beta-lactamase-encoding gene, bla(AmpC)-class-C beta-lactamase-encoding gene, and the qnr gene. Bacteria can acquire and transmit these genes through different horizontal gene-transmission mechanisms such as transformation, transduction, and conjugation. The genes for antibiotic resistance are present on Shewanella chromosomes and plasmids. Apart from this, heavy metals such as arsenic, mercury, cadmium, and chromium can also increase antibiotic resistance in Shewanella due to co-selection processes such as co-resistance, cross resistance, and co-regulation mechanisms. Antibiotics and drugs enter Shewanella spp. through pores or gates in their cell wall and may be ejected from the bacteria by efflux pumps, which are the first line of bacterial defense against antibiotics. Multiple-drug resistant Shewanella can be particularly difficult to control. This review focuses on the phenotypic and genomic characteristics of Shewanella that are involved in the increase in antimicrobial resistance in this bacterium. | 2025 | 40431288 |
| 4423 | 9 | 0.9999 | Inactivation of antibiotics and the dissemination of resistance genes. The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature. | 1994 | 8153624 |
| 4323 | 10 | 0.9999 | Current trends of human infections and antibiotic resistance of the genus Shewanella. Shewanella spp. are commonly known as environmental bacteria and are most frequently isolated from aquatic areas. Currently, diseases syndromes and multidrug resistance have increasingly been reported in the genus Shewanella. Some species are associated with various infections, such as skin and soft tissue infections, as well as bacteremia. Generally, these bacteria are opportunistic and mostly affect people with an impaired immune system. This genus is also a probable vehicle and progenitor of antibiotic resistance genes. In fact, several resistance genes and mobile genetic elements have been identified in some resistant species isolated from environmental or clinical settings. These genes confer resistance to different antibiotic classes, including those used in therapies such as β-lactams and quinolones, and are generally located on the chromosome. Recently, a multidrug-resistant (MDR) plasmid harboring several drug resistance genes associated with transposons and integrons has been identified in Shewanella xiamenensis. These antibiotic resistance genes can circulate in the environment and contribute to the emergence of antibiotic resistance. This review describes different aspects of Shewanella, focusing on the infections caused by this genus, as well as their role in the propagation of antibiotic resistance via mobile genetic elements. | 2017 | 28299457 |
| 4143 | 11 | 0.9999 | Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Efflux mechanisms that account for resistance to a variety of antimicrobial agents are commonly found in a wide range of bacteria. Two major groups of efflux systems are known, specific exporters and transporters conferring multidrug resistance (MDR). The MDR systems are able to remove antimicrobials of different classes from the bacterial cell and occasionally play a role in the intrinsic resistance of some bacteria to certain antimicrobials. Their genes are commonly located on the bacterial chromosome. In contrast, the genes coding for specific efflux systems are often associated with mobile genetic elements which can easily be interchanged between bacteria. Specific efflux systems have mainly been identified with resistances to macrolides, lincosamides and/or streptogramins, tetracyclines, as well as chloramphenicol/florfenicol in Gram-positive and Gram-negative bacteria. In this review, we focus on the molecular biology of antimicrobial resistance mediated by specific efflux systems and highlight the association of the respective resistance genes with mobile genetic elements and their distribution across species and genus borders. | 2003 | 13678822 |
| 4134 | 12 | 0.9999 | Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes. | 2014 | 26104453 |
| 4133 | 13 | 0.9999 | Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics. | 2001 | 11432416 |
| 3834 | 14 | 0.9999 | What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events. Two of the most closely monitored phenotypes are resistance to beta-lactams and resistance to fluoroquinolones. Studies of resistance to these antimicrobials have revealed that (1) transformation occurs between different species of bacteria including some recipient species that were not previously known to be competent for natural transformation; (2) transduction may be playing an important role in generating novel methicillin-resistant Staphylococcus aureus (MRSA) strains, although the details of transferring the SCCmec element are not yet fully understood; (3) Resistance genes are probably moving to plasmids from chromosomes more rapidly than in the past; and (4) Resistance genes are aggregating upon plasmids. The linkage of numerous resistance genes on individual plasmids may underlie the persistence of resistance to specific antimicrobials even when use of those antimicrobials is discontinued. Further studies of HGT and methods for controlling HGT may be necessary to maintain the usefulness of antimicrobials. | 2009 | 19271198 |
| 4325 | 15 | 0.9999 | Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides. | 2022 | 35884160 |
| 4364 | 16 | 0.9999 | Antibiotic resistance is prevalent in an isolated cave microbiome. Antibiotic resistance is a global challenge that impacts all pharmaceutically used antibiotics. The origin of the genes associated with this resistance is of significant importance to our understanding of the evolution and dissemination of antibiotic resistance in pathogens. A growing body of evidence implicates environmental organisms as reservoirs of these resistance genes; however, the role of anthropogenic use of antibiotics in the emergence of these genes is controversial. We report a screen of a sample of the culturable microbiome of Lechuguilla Cave, New Mexico, in a region of the cave that has been isolated for over 4 million years. We report that, like surface microbes, these bacteria were highly resistant to antibiotics; some strains were resistant to 14 different commercially available antibiotics. Resistance was detected to a wide range of structurally different antibiotics including daptomycin, an antibiotic of last resort in the treatment of drug resistant Gram-positive pathogens. Enzyme-mediated mechanisms of resistance were also discovered for natural and semi-synthetic macrolide antibiotics via glycosylation and through a kinase-mediated phosphorylation mechanism. Sequencing of the genome of one of the resistant bacteria identified a macrolide kinase encoding gene and characterization of its product revealed it to be related to a known family of kinases circulating in modern drug resistant pathogens. The implications of this study are significant to our understanding of the prevalence of resistance, even in microbiomes isolated from human use of antibiotics. This supports a growing understanding that antibiotic resistance is natural, ancient, and hard wired in the microbial pangenome. | 2012 | 22509370 |
| 4671 | 17 | 0.9999 | Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels. | 2022 | 35768448 |
| 4153 | 18 | 0.9999 | Amino acid variation in the GyrA subunit of bacteria potentially associated with natural resistance to fluoroquinolone antibiotics. In studies of genetic diversity in natural microbial populations, we have analyzed nucleotide sequences in the quinolone resistance-determining region of the bacterial gyrA gene in ciprofloxacin-resistant and nonselected soil bacteria obtained from the environment. It is apparent that this sequence is highly variable, and resistance to fluoroquinolone antibiotics occurring in environmental populations of bacteria is due at least in part to natural sequence variation in this domain. We suggest that the development of new antimicrobial agents, including completely synthetic antimicrobials such as the fluoroquinolones, should incorporate the analysis of resistance mechanisms among microbes in natural environments; these studies could predict potential mechanisms of resistance to be encountered in subsequent clinical use of the agents and would guide chemical modification designed to evade resistance development. | 1997 | 9420056 |
| 4658 | 19 | 0.9999 | Class 1 integrons potentially predating the association with tn402-like transposition genes are present in a sediment microbial community. Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era." | 2006 | 16885440 |