# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4143 | 0 | 1.0000 | Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Efflux mechanisms that account for resistance to a variety of antimicrobial agents are commonly found in a wide range of bacteria. Two major groups of efflux systems are known, specific exporters and transporters conferring multidrug resistance (MDR). The MDR systems are able to remove antimicrobials of different classes from the bacterial cell and occasionally play a role in the intrinsic resistance of some bacteria to certain antimicrobials. Their genes are commonly located on the bacterial chromosome. In contrast, the genes coding for specific efflux systems are often associated with mobile genetic elements which can easily be interchanged between bacteria. Specific efflux systems have mainly been identified with resistances to macrolides, lincosamides and/or streptogramins, tetracyclines, as well as chloramphenicol/florfenicol in Gram-positive and Gram-negative bacteria. In this review, we focus on the molecular biology of antimicrobial resistance mediated by specific efflux systems and highlight the association of the respective resistance genes with mobile genetic elements and their distribution across species and genus borders. | 2003 | 13678822 |
| 4145 | 1 | 0.9999 | Antimicrobial Resistance among Staphylococci of Animal Origin. Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin. | 2018 | 29992898 |
| 4417 | 2 | 0.9999 | Genetic mobility and distribution of tetracycline resistance determinants. Since 1953, tetracycline-resistant bacteria have been found increasingly in humans, animals, food and the environment. Tetracycline resistance is normally due to the acquisition of new genes and is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from its action. Gram-negative efflux genes are frequently associated with conjugative plasmids, whereas Gram-positive efflux genes are often found on small mobilizable plasmids or in the chromosome. The ribosomal protection genes are generally associated with conjugative transposons which have a preference for the chromosome. Recently, tetracycline resistance genes have been found in the genera Mycobacterium, Nocardia, Streptomyces and Treponema. The Tet M determinant codes for a ribosomal protection protein which can be found in Gram-positive, Gram-negative, cell-wall-free, aerobic, anaerobic, pathogenic, opportunistic and normal flora species. This promiscuous nature may be correlated with its location on a conjugative transposon and its ability to cross most biochemical and physical barriers found in bacteria. The Tet B efflux determinant is unlike other efflux gene products because it confers resistance to tetracycline, doxycycline and minocycline and has the widest host range of all Gram-negative efflux determinants. We have hypothesized that mobility and the environment of the bacteria may help influence the ultimate host range of specific tet genes. If we are to reverse the trend towards increasingly antibiotic-resistant pathogenic bacteria, we will need to change how antibiotics are used in both human and animal health as well as food production. | 1997 | 9189643 |
| 4144 | 3 | 0.9999 | The diversity of antimicrobial resistance genes among staphylococci of animal origin. Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. | 2013 | 23499306 |
| 4426 | 4 | 0.9999 | Microbial multidrug resistance. Multiresistance plasmids and transposons, the integrons, the co-amplification of several resistance genes or finally the accumulation of independent mutations can lead to microorganisms resistant to multiple drugs. On the other hand multidrug resistance is due to an efflux pump conferring resistance to unrelated drugs. These microbial efflux pumps are belonging to various transporter families and are often encoded in microbial genomes. There is mounting evidence that these efflux systems are responsible for clinical multidrug resistance in bacteria, yeasts and parasites. | 1997 | 18611799 |
| 4149 | 5 | 0.9999 | Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Soil bacteria may contain antibiotic resistance genes responsible for different mechanisms that permit them to overcome the natural antibiotics present in the environment. This gene pool has been recently named the 'resistome', and its components can be mobilized into the microbial community affecting humans because of the participation of genetic platforms that efficiently facilitate the mobilization and maintenance of these resistance genes. Evidence for this transference has been suggested or demonstrated with newly identified widespread genes in multidrug-resistant bacteria. These resistance genes include those responsible for ribosomal methylases affecting aminoglycosides (armA, rtmB), methyltransferases affecting linezolid (cfr) or plasmid-mediated efflux pumps conferring low-level fluoroquinolone resistance (qepA), all of which are associated with antibiotic-producing bacteria. In addition, resistance genes whose ancestors have been identified in environmental isolates that are not recognized as antibiotic producers have also been recently detected. These include the qnr and the bla(CTX) genes compromising the activity of fluoroquinolones and extended-spectrum cephalosporins, respectively. The application of metagenomic tools and phylogenetic analysis will facilitate future identification of other new resistance genes and their corresponding ancestors in environmental bacteria, and will enable further exploration of the concept of the resistome as being a unique reservoir of antibiotic resistance genes and genetic elements participating in resistance gene transfer. | 2009 | 19220348 |
| 4423 | 6 | 0.9999 | Inactivation of antibiotics and the dissemination of resistance genes. The emergence of multidrug-resistant bacteria is a phenomenon of concern to the clinician and the pharmaceutical industry, as it is the major cause of failure in the treatment of infectious diseases. The most common mechanism of resistance in pathogenic bacteria to antibiotics of the aminoglycoside, beta-lactam (penicillins and cephalosporins), and chloramphenicol types involves the enzymic inactivation of the antibiotic by hydrolysis or by formation of inactive derivatives. Such resistance determinants most probably were acquired by pathogenic bacteria from a pool of resistance genes in other microbial genera, including antibiotic-producing organisms. The resistance gene sequences were subsequently integrated by site-specific recombination into several classes of naturally occurring gene expression cassettes (typically "integrons") and disseminated within the microbial population by a variety of gene transfer mechanisms. Although bacterial conjugation once was believed to be restricted in host range, it now appears that this mechanism of transfer permits genetic exchange between many different bacterial genera in nature. | 1994 | 8153624 |
| 4152 | 7 | 0.9999 | Quinolone resistance: much more than predicted. Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones. | 2011 | 21687414 |
| 4142 | 8 | 0.9999 | Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms. | 2018 | 29916344 |
| 4140 | 9 | 0.9999 | Use of antimicrobials in veterinary medicine and mechanisms of resistance. This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation. | 2001 | 11432414 |
| 4141 | 10 | 0.9999 | Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Aspects of bacterial resistance to the major classes of antimicrobials used in veterinary dermatology are presented in this review. Resistance of gram-positive and gram-negative bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, chloramphenicol, mupirocin, sulphonamides, trimethoprim, aminoglycosides, fluoroquinolones and β-lactam antibiotics are depicted with respect to the different mechanisms of acquired and intrinsic resistance. Examples are given for the three major resistance mechanisms, enzymatic inactivation, decreased intracellular drug accumulation and target modification. In addition, basic information about mobile genetic elements which carry resistance genes, such as plasmids, transposons and gene cassettes, and their modes of spreading via transduction, conjugation, mobilization and transformation is provided. | 1999 | 34644923 |
| 4419 | 11 | 0.9999 | Epidemiology of tetracycline-resistance determinants. Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline. | 1994 | 7850200 |
| 4134 | 12 | 0.9999 | Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes. | 2014 | 26104453 |
| 4150 | 13 | 0.9999 | The worldwide emergence of plasmid-mediated quinolone resistance. Fluoroquinolone resistance is emerging in gram-negative pathogens worldwide. The traditional understanding that quinolone resistance is acquired only through mutation and transmitted only vertically does not entirely account for the relative ease with which resistance develops in exquisitely susceptible organisms, or for the very strong association between resistance to quinolones and to other agents. The recent discovery of plasmid-mediated horizontally transferable genes encoding quinolone resistance might shed light on these phenomena. The Qnr proteins, capable of protecting DNA gyrase from quinolones, have homologues in water-dwelling bacteria, and seem to have been in circulation for some time, having achieved global distribution in a variety of plasmid environments and bacterial genera. AAC(6')-Ib-cr, a variant aminoglycoside acetyltransferase capable of modifying ciprofloxacin and reducing its activity, seems to have emerged more recently, but might be even more prevalent than the Qnr proteins. Both mechanisms provide low-level quinolone resistance that facilitates the emergence of higher-level resistance in the presence of quinolones at therapeutic levels. Much remains to be understood about these genes, but their insidious promotion of substantial resistance, their horizontal spread, and their co-selection with other resistance elements indicate that a more cautious approach to quinolone use and a reconsideration of clinical breakpoints are needed. | 2006 | 17008172 |
| 4424 | 14 | 0.9999 | Gene transfer, gentamicin resistance and enterococci. Enterococci are versatile pathogens by virtue of their ability to exhibit low-level intrinsic resistance to clinically useful antibiotics and their tolerance to adverse environmental conditions. In the last 20 years these pathogens have become progressively more difficult to treat because of their aptitude for acquiring antibiotic-resistance genes. Of increasing concern is the rapid dissemination of the AAC6'-APH2" bi-functional aminoglycoside modifying enzyme. This enzyme confers high-level resistance to gentamicin and all other related aminoglycosides with the exception of streptomycin. The gene conferring this phenotype has been associated with both narrow and broad host range plasmids, and has recently been found on conjugative transposons. The nature of these conjugative elements raises the possibility of the resistance gene spreading to other pathogenic bacteria. | 1997 | 9261754 |
| 4470 | 15 | 0.9998 | R-factors in gram-positive and gram-negative aerobic bacteria selected by antimicrobial therapy. Populations of resistant bacteria emerge by the operation of selective pressure on resistant bacteria. The acquisition of resistance by sensitive bacteria is dependent upon the genetic determinant of the resistance, and its ability to move between different bacterial cells and within cells between different replicons. In contrast to chromosomal mediated resistance, plasmids and transposable elements coding for resistance to antibiotics have been the major factors in the spread of resistance and the prevalence of resistant bacteria in humans, farm animals and poultry. Different types of R-factors can be described. Resistance to ampicillin, tetracycline, chloramphenicol, gentamicin, trimethoprim, erythromycin may exemplify epidemiological aspects of resistance genes in Gram-negative and Gram-positive bacteria. The ecological destiny of resistant bacterial populations suggests the role of other factors than antibiotic resistance: characters of a particular host, host-plasmid relationship and properties which may lead to survival and adaptation in a given niche. | 1986 | 3547625 |
| 4425 | 16 | 0.9998 | Multidrug resistance in bacteria. Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. | 2009 | 19231985 |
| 4326 | 17 | 0.9998 | Antibiotic resistance in oral/respiratory bacteria. In the last 20 years, changes in world technology have occurred which have allowed for the rapid transport of people, food, and goods. Unfortunately, antibiotic residues and antibiotic-resistant bacteria have been transported as well. Over the past 20 years, the rise in antibiotic-resistant gene carriage in virtually every species of bacteria, not just oral/respiratory bacteria, has been documented. In this review, the main mechanisms of resistance to the important antibiotics used for treatment of disease caused by oral/respiratory bacteria--including beta-lactams, tetracycline, and metronidazole--are discussed in detail. Mechanisms of resistance for macrolides, lincosamides, streptogramins, trimethoprim, sulfonamides, aminoglycosides, and chloramphenicol are also discussed, along with the possible role that mercury resistance may play in the bacterial ecology. | 1998 | 9825225 |
| 4416 | 18 | 0.9998 | Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. Tetracycline-resistant bacteria were first isolated in 1953 from Shigella dysenteriae, a bacterium which causes bacterial dysentery. Since then tetracycline-resistant bacterial have been found in increasing numbers of species and genera. This has resulted in reduced effectiveness of tetracycline therapy over time. Tetracycline resistance is normally due to the acquisition of new genes often associated with either a mobile plasmid or a transposon. These tetracycline resistance determinants are distinguishable both genetically and biochemically. Resistance is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from the action of tetracycline. Gram-negative tetracycline efflux proteins are linked to repressor proteins which in the absence of tetracycline block transcription of the repressor and structural efflux genes. In contrast, expression of the Gram-positive tetracycline efflux genes and some of the ribosomal protection genes appears to be regulated by attenuation of mRNA transcription. Specific tetracycline resistance genes have been identified in 32 Gram-negative and 22 Gram-positive genera. Tetracycline-resistant bacteria are found in pathogens, opportunistic and normal flora species. Tetracycline-resistant bacteria can be isolated from man, animals, food, and the environment. The nonpathogens in each of these ecosystems may play an important role as reservoirs for the antibiotic resistance genes. It is clear that if we are to reverse the trend toward increasingly antibiotic-resistant pathogenic bacteria we will need to change how antibiotics are used in both human and animal health and food production. | 1996 | 8916553 |
| 4427 | 19 | 0.9998 | Mechanisms of quinolone action and microbial response. Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones. | 2003 | 12702701 |