Effect of multiple, compatible plasmids on the fitness of the bacterial host by inducing transcriptional changes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
41201.0000Effect of multiple, compatible plasmids on the fitness of the bacterial host by inducing transcriptional changes. OBJECTIVES: Bacteria that acquire plasmids incur a biological cost. Despite this fact, clinical Enterobacteriaceae isolates commonly contain multiple co-existing plasmids harbouring carbapenemase genes. METHODS: Six different plasmids carrying blaNDM-1, blaNDM-5, blaCTX-M-15, blaKPC-2, blaOXA-181 and blaOXA-232 genes were obtained from Klebsiella pneumoniae and Escherichia coli clinical isolates. Using the E. coli DH5α strain as recipient, 14 transconjugants with diverse plasmid combinations (single or double plasmids) were generated. For each of these, the effects of plasmid carriage on the bacterial host were investigated using in vitro and in vivo competition assays; additionally, the effects were investigated in the context of biofilm formation, serum resistance and survival inside macrophages. Transcriptomic changes in single- and double-plasmid recipients were also investigated. RESULTS: Increased in vitro and in vivo competitiveness was observed when two plasmids carrying blaNDM-1 and blaOXA-232 were co-introduced into the host bacteria. However, DH5α::pNDM5 + pOXA232 and other double-plasmid recipients did not show such competitiveness. DH5α::pNDM5 + pOXA181 did not show any fitness cost compared with a plasmid-free host and single-plasmid transconjugants, while both the double-plasmid recipients with pCTXM15 or pKPC2 exhibited a fitness burden. The double-plasmid recipient DH5α::pNDM1 + pOXA232 also exhibited increased biofilm formation, serum resistance and survival inside macrophages. Transcriptomic analysis revealed that the genes of DH5α::pNDM1 + pOXA232 involved in metabolic pathways, transport and stress response were up-regulated, while those involved in translation were down-regulated. CONCLUSIONS: Our study suggests that bacterial strains can gain fitness through the acquisition of multiple plasmids harbouring antibiotic resistance genes, which may be mediated by transcriptomic changes in the chromosomal genes of the bacterial host.202134279638
569610.9995Co-introduction of plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), increases fitness and virulence of bacterial host. BACKGROUND: Bacterial isolates with multiple plasmids harbouring different carbapenemase genes have emerged and been identified repeatedly, despite a general notion that plasmids confer fitness cost in bacterial host. In this study, we investigated the effects of plasmids with carbapenemase genes on the fitness and virulence of bacteria. METHODS: Different plasmids harbouring the carbapenemase genes, bla(NDM-1) and bla(OXA-232), were isolated from a carbapenem-resistant K. pneumoniae strain. Each plasmid was conjugated into the Escherichia coli strain DH5α, and a transconjugant with both plasmids was also obtained by transformation. Their in vitro competitive ability, biofilm formation, serum resistance, survival ability within macrophage and fruit fly, and fly killing ability were evaluated. RESULTS: The transconjugants with a single plasmid showed identical phenotypes to the plasmid-free strain, except that they decreased fly survival after infection. However, significantly increased fitness, virulence and biofilm production were observed consistently for the transconjugant with both plasmids, harbouring bla(NDM-1) and bla(OXA-232). CONCLUSIONS: Our data indicate that bacteria carrying multiple plasmids encoding different carbapenemases may have increased fitness and virulence, emphasizing the need for diverse strategies to combat antimicrobial resistance.202031900177
42120.9995Effect of pap copy number and receptor specificity on virulence of fimbriated Escherichia coli in a murine urinary tract colonization model. Escherichia coli FN506 containing pap genes that encode two different P fimbriae adherence specificity types were tested for virulence in a murine urinary colonization model. Strains containing adherence genes on either high copy or low copy plasmids were compared. Bacteria that harbored the adherence genes on high copy plasmids colonized mouse kidneys less well than bacteria with the same adherence genes in low copy even though the high copy strains exhibited greater hemagglutination capacity. Bacteria with either type of P fimbriae were able to colonize but pap-2+ bacteria showed increased colonizing capacity when strains containing pap-1 or pap-2 genes on low copy plasmids were compared. Bacteria containing plasmids with both adherence specificities had a similar colonizing capacity as bacteria with either type separately.19947861959
505630.9995Step-Wise Increase in Tigecycline Resistance in Klebsiella pneumoniae Associated with Mutations in ramR, lon and rpsJ. Klebsiella pneumoniae is a gram-negative bacterium that causes numerous diseases, including pneumonia and urinary tract infections. An increase in multidrug resistance has complicated the treatment of these bacterial infections, and although tigecycline shows activity against a broad spectrum of bacteria, resistant strains have emerged. In this study, the whole genomes of two clinical and six laboratory-evolved strains were sequenced to identify putative mutations related to tigecycline resistance. Of seven tigecycline-resistant strains, seven (100%) had ramR mutations, five (71.4%) had lon mutations, one (14.2%) had a ramA mutation, and one (14.2%) had an rpsJ mutation. A higher fitness cost was observed in the laboratory-evolved strains but not in the clinical strains. A transcriptome analysis demonstrated high expression of the ramR operon and acrA in all tigecycline-resistant strains. Genes involved in nitrogen metabolism were induced in the laboratory-evolved strains compared with the wild-type and clinical strains, and this difference in nitrogen metabolism reflected the variation between the laboratory-evolved and the clinical strains. Complementation experiments showed that both the wild-type ramR and the lon genes could partially restore the tigecycline sensitivity of K. pneumoniae. We believe that this manuscript describes the first construct of a lon mutant in K. pneumoniae, which allowed confirmation of its association with tigecycline resistance. Our findings illustrate the importance of the ramR operon and the lon and rpsJ genes in K. pneumoniae resistance to tigecycline.201627764207
491340.9994Multiple Plasmids Contribute to Antibiotic Resistance and Macrophage Survival In Vitro in CMY2-Bearing Salmonella enterica. Multiple drug resistance (MDR) in bacteria represents a notable problem but if carried on plasmid their spread could become a significant threat to public health. Plasmids in members of the Enterobacteriaceae family and in particular Salmonella and Escherichia coli strains have been implicated in the spread of antibiotic resistance genes. However, the mechanisms involved in the transfer of plasmid-borne resistance genes are not fully understood. Here, we analyzed the ability of Salmonella enterica clinical isolates to transfer plasmid-borne MDR to E. coli. We also determined whether possession of an Inc A/C plasmid by a S. enterica isolate would confer increased fitness compared to an isolate not carrying the plasmid. Sixteen human and animal isolates of S. enterica were screened using a three-panel multiplex PCR assay, and simplex PCR for the blaCMY-2 gene. Using these data we selected a suitable strain as a plasmid donor for the construction of a new Salmonella strain with an Inc A/C plasmid. This allowed us to compare isogenic strains with and without the Inc A/C plasmid in multiple growth, fitness, and invasion assays. The results showed that possession of Inc A/C plasmid confers significant fitness advantage when tested in J774 macrophages as opposed to HEp-2 cells where no significant difference was found. In addition, stress assays performed in vitro showed that the possession of this large plasmid by Salmonella strains tested here does not appear to incur a significant fitness cost. Gaining a better understanding of molecular mechanisms of plasmid transfer between pathogenic bacteria will allow us to characterize the role of MDR in pathogenicity of bacteria and to identify methods to reduce the frequency of dissemination of multiple antibiotic resistance genes.201627070176
482550.9994Proof of the triple prerequisite conditions which are essential for carbapenem resistance development in Klebsiella pneumoniae by using radiation-mediated mutagenesis. Evolution of multi-drug resistant bacteria has led to worldwide research to better understand the various resistance mechanisms in these strains. Every year, novel information on carbapenem resistance and its mechanisms is being discovered. In this study, radiation-mediated mutagenesis was used to transform a carbapenem-resistant Klebsiella pneumoniae strain to a carbapenem-susceptible bacterium. Through this process, we proved three conditions of loss of the OmpK35 and the OmpK36 genes and acquisition of blaCMY-10 worked together to produce carbapenem resistance in K. pneumoniae. Loss of only one of the porins did not evoke carbapenem resistance. This is the first report on the essential contribution of these three components of carbapenem resistance in K. pneumoniae.202133469646
993960.9994Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. OBJECTIVES: In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS: A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS: This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS: The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.202134613377
41070.9994Identification of Genes Essential for Antibiotic-Induced Up-Regulation of Plasmid-Transfer-Genes in Cephalosporin Resistant Escherichia coli. Bacterial conjugation is one of the most important mechanisms for spread of antibiotic resistance among bacteria. We have previously demonstrated that cefotaxime (CTX) exposure up-regulates expression of Type-IV conjugation transfer genes, and that this leads to increased transfer of a bla (CTX-M-) (1) encoding IncI1 resistance plasmid pTF2 in Escherichia coli. To elucidate the underlying mechanisms, a search for genes that are essential for the up-regulated expression of the transfer (tra) genes in the presence of CTX was undertaken. We constructed a reporter gene-fusion strain MG1655/pTF2 ΔtraF:lacZ where the promoter region of the traF-gene of the plasmid pTF2 was fused with a lacZ on the native plasmid. Random mutagenesis mediated by Tn5 transposon was carried out in the strain, and seven genes (rfaH, yhiN, waaP, waaQ, gnd, pgl, and ISEcp1) were identified where insertion prevented CTX-induced up regulation of traF. Site-specific mutagenesis was carried out, and for all seven mutants, gene deletions abolished the CTX induced up-regulation of traF, and the increased conjugation transfer of the plasmid in the presence of CTX was no longer observed. In addition, the deletion of the genes also abolished CTX induced expression of the bla (CTX-M-) (1) gene. Our results suggested that through CTX induced induction of the identified genes, bla (CTX-M-) (1) expression increased, which led to up-regulation of traF and plasmid transfer. These data reveal that a number of chromosomally encoded genes contribute to the antibiotic induced up-regulation of the conjugation machinery of plasmids, and such genes may be future targets to prevent antibiotic induced spread of resistance plasmids.201931616400
41380.9994The CTX-M-14 plasmid pHK01 encodes novel small RNAs and influences host growth and motility. The dissemination of extended-spectrum β-lactamases (ESBLs) genes among bacteria is commonly achieved by plasmid conjugation. In the last decade, the CTX-M type enzyme was the most widespread and prevalent ESBLs in the world. In Hong Kong and mainland China, among the commonly found CTX-M-carrying plasmids were pHK01 and pHK01-like plasmids, which belong to incompatibility group FII (IncFII). In this work, we studied the physiological effect caused by the pHK01 plasmid in bacterial host Escherichia coli J53. The plasmid did not affect cell growth of the host but reduced their motility. The reduction of host motility was attributed to downregulation of genes that encode the flagellar system. We also identified several plasmid-encoded sRNAs, and showed that the overexpression of one of them, AS-traI, in the presence of pHK01 plasmid shortened the lag phase of host growth. In addition to the study of pHK01 in bacteria, we also developed a fast and incompatibility group-specific curing method using countertranscribed RNA, which could be of general usage for studying plasmid-host interaction in clinical aspects.201728854680
625590.9994Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli. Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis.201526014933
4912100.9994Acquisition of plasmids from Shiga toxin-producing Escherichia coli strains had low or neutral fitness cost on commensal E. coli. Although it has been hypothesized that the acquisition of plasmids-especially those bearing virulence factors and antimicrobial resistance genes-increases the energetic burden and reduces the fitness of a bacterium in general, some results have challenged this view, showing little or no effect on fitness after plasmid acquisition, which may lead to change in the view that there are evolutionary barriers for a wide spread of such plasmids among bacteria. Here, to evaluate the fitness impact of plasmid-encoded antibiotic resistance and virulence genes, plasmids from O26:H11, O111:H8, and O118:H16 Shiga toxin-producing Escherichia coli (STEC) human and bovine isolates were transferred to the non-virulent E. coli HS and K-12 MG1655 strains. Sequencing and PCR were used to characterize plasmids, and to identify the presence of antimicrobial resistance and/or virulence genes. The fitness impact of plasmids encoding virulence and antimicrobial resistance upon bacterial hosts was determined by pairwise growth competition. Plasmid profile analysis showed that STEC strains carried one or more high and low molecular weight plasmids belonging to the B/O, F, I, K, P, Q, and/or X incompatibility groups encoding virulence genes (SPATE-encoding genes) and/or antimicrobial resistance genes (aadA1, strAB, tetA, and/or tetB). Competition experiments demonstrated that the biological cost of carriage of these plasmids by the commensal E. coli strain HS or the laboratory strain E. coli K-12 MG1655 was low or non-existent, ranging from - 4.7 to 5.2% per generation. This suggests that there are few biological barriers-or, alternatively, it suggests that there are biological barriers that we were not able to measure in this competition model-against the spread of plasmid encoding virulence and resistance genes from STEC to other, less pathogenic E. coli strains. Thus, our results, in opposition to a common view, suggest that the acquisition of plasmids does not significantly affect the bacteria fitness and, therefore, the theorized plasmid burden would not be a significant barrier for plasmid spread.202438396221
5838110.9994Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug.202439203486
4945120.9994Engineering of a monitorable expression system to characterize β-lactamase genes in Enterobacteriaceae. Bacteria are becoming progressively more resistant to available antimicrobials. The increased ease and availability of genome sequencing has made it possible to identify putative, novel antimicrobial resistance (AMR) genes bioinformatically. However, no standardized system is available to phenotypically characterize the ability of novel AMR genes in Enterobacteriaceae to confer resistance and impact bacterial physiology and pathogenicity in relation to expression levels. We previously used plasmid pBAD24, which allows for arabinose-inducible expression of heterologous genes, and Escherichia coli Top10 to characterize mobile colistin resistance genes. Based on the pBAD24 backbone, we constructed a new plasmid (pBAD25) that carries a kanamycin resistance gene (instead of an ampicillin resistance gene). We show that our expression system allows for the characterization of five different bla(OXA) genes, which differ in their ability to confer susceptibility to β-lactams, detected protein levels, and impact on bacterial growth. We characterized bla(OXA-48b), a close relative of bla(OXA-48), previously uncharacterized in E. coli, to be phenotypically similar to bla(OXA-48,) and bla(OXA-549), a previously uncharacterized gene of the bla(OXA-548) family, as encoding a β-lactamase that is detected intra- but not extracellularly, has moderate growth defects, and decreases susceptibility to carbapenems and ampicillin. Additionally, we found that, in bla(OXA) expressing strains, (i) levels of intracellular proteins and bacterial growth negatively correlate and (ii) susceptibility to 2nd and 3rd generation cephalosporins and susceptibility to different carbapenems positively correlate. Our results demonstrate that the expression of AMR genes, specifically bla(OXA) genes, through pBAD25 allows for easy characterization of putative, novel AMR genes.202540113096
5837130.9994The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.201728198411
411140.9994A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.202133721023
5695150.9994Competition assays between ESBL-producing E. coli and K. pneumoniae isolates collected from Lebanese elderly: An additional cost on fitness. The dissemination of Multi Drug Resistant Organisms (MDROs) is one of the major public health problems addressed nowadays. High fecal carriage rates of MDR Enterobacteriaceae were reported from Lebanese nursing homes. Studies have shown that the acquisition of resistance genes by bacteria might confer a fitness cost detected as a decrease in the frequency of these bacteria as compared to sensitive isolates. In this study, the competitive growth of MDR Enterobacteriaceae isolated from elderly is assessed. Sensitive and ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates were identified. Inter-species in-vitro competition assays were conducted in different combinations. ESBL-producing K. pneumoniae presented a fitness cost when competing against sensitive E. coli. On the other hand, resistant E. coli only showed a fitness cost when growing in presence of two sensitive K. pneumoniae isolates. These results suggest that ESBL-production genes in E. coli and K. pneumoniae may confer a fitness cost that leads to the decrease in frequency of these bacteria in interspecies competitions. Culturing bacteria in a medium with more diverse isolates can provide better insights into bacterial competition and resistance dynamics, which can be exploited in the search for alternative therapeutic approaches towards the colonization of resistant bacteria.201828988774
420160.9994Transferable nitrofuran resistance conferred by R-plasmids in clinical isolates of Escherichia coli. A high proportion of nitrofuran-resistant strains has been found in a collection of antibiotic-resistant Gram-negative bacteria isolated from patients with urinary tract infections. Some of the Escherichia coli carried R-plasmids that conferred resistance to nitrofurantoin and nitrofurazone. The mechanism of resistance is not clear; only in lactose non-fermenting recipients was there a decrease in the nitrofuran-reducing ability of whole-cell suspensions. One of the plasmids conferred enhanced resistance to UV light on DNA repair defective mutants but not on repair efficient strains. In some resistant strains, the total resistance was apparently the result of a combination of chromosomal and plasmid-borne genes. The presence of the plasmid may allow the development of higher resistance levels by mutation of chromosomal genes.19836368515
9942170.9993Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae. The antimicrobial resistance (AMR) crisis urgently requires countermeasures for reducing the dissemination of plasmid-borne resistance genes. Of particular concern are opportunistic pathogens of Enterobacteriaceae. One innovative approach is the CRISPR-Cas9 system which has recently been used for plasmid curing in defined strains of Escherichia coli. Here we exploited this system further under challenging conditions: by targeting the bla (TEM-) (1) AMR gene located on a high-copy plasmid (i.e., 100-300 copies/cell) and by directly tackling bla (TEM-) (1)-positive clinical isolates. Upon CRISPR-Cas9 insertion into a model strain of E. coli harboring bla (TEM-) (1) on the plasmid pSB1A2, the plasmid number and, accordingly, the bla (TEM-) (1) gene expression decreased but did not become extinct in a subpopulation of CRISPR-Cas9 treated bacteria. Sequence alterations in bla (TEM-) (1) were observed, likely resulting in a dysfunction of the gene product. As a consequence, a full reversal to an antibiotic sensitive phenotype was achieved, despite plasmid maintenance. In a clinical isolate of E. coli, plasmid clearance and simultaneous re-sensitization to five beta-lactams was possible. Reusability of antibiotics could be confirmed by rescuing larvae of Galleria mellonella infected with CRISPR-Cas9-treated E. coli, as opposed to infection with the unmodified clinical isolate. The drug sensitivity levels could also be increased in a clinical isolate of Enterobacter hormaechei and to a lesser extent in Klebsiella variicola, both of which harbored additional resistance genes affecting beta-lactams. The data show that targeting drug resistance genes is encouraging even when facing high-copy plasmids. In clinical isolates, the simultaneous interference with multiple genes mediating overlapping drug resistance might be the clue for successful phenotype reversal.202032425894
6265180.9993Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. The fitness cost of the genes responsible for resistance to fluoroquinolones in clinical isolates of Streptococcus pneumoniae were estimated in vitro in a common genetic background. Naturally occurring parC, parE, and gyrA loci containing mutations in the quinolone-resistance-determining regions were introduced by transformation into S. pneumoniae strain R6 individually and in combinations. The fitness of these transformants was estimated by pairwise competition experiments with a common R6 strain. On average, single par and gyr mutants responsible for low-level MIC resistance (first-step resistance) impose a fitness burden of approximately 8%. Some of these mutants engender no measurable cost, while one, a parE mutant, reduces the fitness of these bacteria by more than 40%. Most interestingly, the addition of the second par or gyr mutations required for clinically significant, high-MIC fluoroquinolone resistance does not increase the fitness burden imposed by these single genes and can even reduce it. We discuss the implications of these results for the epidemiology of fluoroquinolone resistance and the evolution of acquired resistance in treated patients.200717116668
5760190.9993Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BACKGROUND: More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS: Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION: The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.202439182027