# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4124 | 0 | 1.0000 | A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals. In recent years, there has been increasing concern that the use of antibiotics in food-producing animals, particularly their long-term use for growth promotion, contributes to the emergence of antibiotic-resistant bacteria in animals. These resistant bacteria may spread from animals to humans via the food chain. They may also transfer their antibiotic-resistance genes into human pathogenic bacteria, leading to failure of antibiotic treatment for some, possibly life-threatening, human conditions. To assist regulatory decision making, the actual risk to human health from antibiotic use in animals needs to be determined (risk assessment) and the requirements for risk minimisation (risk management and risk communication) determined. We propose a novel method of risk analysis involving risk assessment for three interrelated hazards: the antibiotic (chemical agent), the antibiotic-resistant bacterium (microbiological agent) and the antibiotic-resistance gene (genetic agent). Risk minimisation may then include control of antibiotic use and/or the reduction of the spread of bacterial infection and/or prevention of transfer of resistance determinants between bacterial populations. | 2002 | 12385693 |
| 4188 | 1 | 0.9999 | Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria. | 2012 | 22849275 |
| 4189 | 2 | 0.9999 | Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life. | 2006 | 17094710 |
| 4123 | 3 | 0.9999 | The Invisible Threat of Antibiotic Resistance in Food. The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance. | 2025 | 40149061 |
| 4190 | 4 | 0.9999 | Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry. | 2014 | 24705326 |
| 6705 | 5 | 0.9999 | Antimicrobial resistance risk assessment in food safety. Microbiological risk assessments generally focus on estimating adverse human health risks from exposures to human pathogenic microbes. The assessment of potential human health risks posed by pathogens that have acquired resistance to antimicrobial drugs is a new application of risk assessment that is closely related to microbiological risk assessment. Antimicrobial resistance risk assessment is a risk analyticalprocess that focuses on resistance determinants as hazardous agents that might lead to drug-resistant microbial infections in humans exposed to bacteria carrying the determinants. Antimicrobial-resistant infections could occur directly from actively inavading or opportunistic pathogens or indirectly from the transfer of resistance genes to other bacteria. Here, we discuss risk assessment models that might be employed to estimate risks from drug-resistant bacteria in the animal food pathway and the types of models and data that may be used for microbiological risk assessments or antimicrobial resistance risk assessments. | 2004 | 15453603 |
| 4215 | 6 | 0.9999 | Antibiotic usage in animals: impact on bacterial resistance and public health. Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine. | 1999 | 10551432 |
| 4195 | 7 | 0.9999 | Vancomycin drug resistance, an emerging threat to animal and public health. The need to supply quality food for the growing human population has led to the revolutionization of food production and processing in recent years. Meanwhile, food production sources are at risk of microbial attack, while the use of antibiotics to counter them is posing another threat to food safety and security. Vancomycin was used as the first line of defense against multiple drug-resistant bacteria salient of which is methicillin-resistant S. aureus. The emergence of the vancomycin resistance gene in bacteria impairs the efficacy of antibiotics on the one hand while its harmful residues impart food safety concerns on the other. Currently, a novel set of resistance genes "Van cluster" is circulating in a wider range of bacteria. Considerable economic losses in terms of low production and food safety are associated with this emerging resistance. The current review focuses on the emergence of vancomycin resistance and its impact on food safety. The review proposes the need for further research on the probable routes, mechanisms, and implications of vancomycin resistance from animals to humans and vice versa. | 2022 | 36387389 |
| 4196 | 8 | 0.9999 | Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages. | 2022 | 36065433 |
| 4214 | 9 | 0.9999 | Antimicrobial usage and resistance in beef production. Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots, threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population. | 2016 | 27999667 |
| 4198 | 10 | 0.9999 | Antimicrobial resistance in bacteria from food-producing animals. risk management tools and strategies. The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals. | 2004 | 15525378 |
| 3976 | 11 | 0.9999 | A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a "reservoir" of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research. | 2022 | 36386682 |
| 4194 | 12 | 0.9999 | Do nonclinical uses of antibiotics make a difference? An increasing range of antibacterial compounds is being used for nonclinical purposes, especially in the fields of animal husbandry and fish farming. As in human medicine, exposure to antibiotics has lead to the emergence of antibiotic-resistant bacteria in animal populations. The potential impact of antibiotic use in animals on human health and the management of clinical infections in humans is discussed in light of growing evidence to suggest that "new" resistance genes and multiresistant pathogens with increased pathogenicity are emerging in food animals as a direct consequence of antibiotic exposure. | 1994 | 7963441 |
| 4053 | 13 | 0.9999 | Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. The concern over antibiotic-resistant bacteria producing human infections that are difficult to treat has led to a proliferation of studies in recent years investigating resistance in livestock, food products, the environment and people, as well as in the mechanisms of transfer of the genetic elements of resistance between bacteria, and the routes, or risk pathways, by which the spread of resistance might occur. The possibility of transfer of resistant genetic elements between bacteria in mixed populations adds many additional and complex potential routes of spread. There is now considerable evidence that transfer of antimicrobial resistance from food-producing animals to humans directly via the food chain is a likely route of spread. The application of animal wastes to farmland and subsequent leaching into watercourses has also been shown to lead to many potential, but less well-documented, pathways for spread. Often, however, where contamination of water sources, processed foods, and other environmental sites is concerned, specific routes of circulation are unclear and may well involve human sources of contamination. Examination of water sources in particular may be difficult due to dilution and their natural flow. Also, as meat is comparatively easy to examine, and is frequently suspected of being a source of spread, there is some bias in favour of studying this vehicle. Such complexities mean that, with the evidence currently available, it is not possible to prioritise the importance of potential risk pathways and circulation routes. | 2012 | 22849279 |
| 4122 | 14 | 0.9999 | Antimicrobial resistance in the food chain: a review. Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. | 2013 | 23812024 |
| 4192 | 15 | 0.9999 | Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. | 2013 | 23805136 |
| 3984 | 16 | 0.9999 | Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance. | 2023 | 36851059 |
| 4117 | 17 | 0.9999 | Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Several lines of evidence indicate that the use of anti-microbial agents in food animals is associated with anti-microbial resistance among bacteria isolated from humans. The use of anti-microbial agents in food animals is most clearly associated with anti-microbial resistance among Salmonella and Campylobacter isolated from humans, but also appears likely among enterococci, Escherichia coli and other bacteria. Evidence is also accumulating that the anti-microbial resistance among bacteria isolated from humans could be the result of using anti-microbial agents in food animals and is leading to human health consequences. These human health consequences include: (i) infections that would not have otherwise occurred and (ii) increased frequency of treatment failures and increased severity of infection. Increased severity of infection includes longer duration of illness, increased frequency of bloodstream infections, increased hospitalization and increased mortality. Continued work and research efforts will provide more evidence to explain the connection between the use of anti-microbial agents in food animals and anti-microbial-resistant infections in humans. One particular focus, which would solidify this connection, is to understand the factors that dictate spread of resistance determinants, especially resistant genes. With continued efforts on the part of the medical, veterinary and public health community, such research may contribute to more precise guidelines on the use of anti-microbials in food animals. | 2004 | 15525369 |
| 3983 | 18 | 0.9999 | Antibiotic resistance genes in bacteria: Occurrence, spread, and control. The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed. | 2021 | 34651331 |
| 4075 | 19 | 0.9999 | Antimicrobial resistance in foodborne pathogens--a cause for concern? The widespread use of antibiotics in food animal production systems has resulted in the emergence of antibiotic resistant zoonotic bacteria that can be transmitted to humans through the food chain. Infection with antibiotic resistant bacteria negatively impacts on public health, due to an increased incidence of treatment failure and severity of disease. Development of resistant bacteria in food animals can result from chromosomal mutations but is more commonly associated with the horizontal transfer of resistance determinants borne on mobile genetic elements. Food may represent a dynamic environment for the continuing transfer of antibiotic resistance determinants between bacteria. Current food preservation systems that use a combination of environmental stresses to reduce growth of bacteria, may serve to escalate development and dissemination of antibiotic resistance among food related pathogens. The increasing reliance on biocides for pathogen control in food production and processing, heightens the risk of selection of biocide-resistant strains. Of particular concern is the potential for sublethal exposure to biocides to select for bacteria with enhanced multi-drug efflux pump activity capable of providing both resistance to biocides and cross-resistance to multiple antibiotics. Although present evidence suggests that biocide resistance is associated with a physiological cost, the possibility of the development of adaptive mutations conferring increased fitness cannot be ruled-out. Strategies aimed at inhibiting efflux pumps and eliminating plasmids could help to restore therapeutic efficacy to antibiotics and reduce the spread of antibiotic resistant foodborne pathogens through the food chain. | 2008 | 18781926 |