Antimicrobial resistance and the food chain. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
411401.0000Antimicrobial resistance and the food chain. The extent to which antibiotics given to animals contribute to the overall problem of antibiotic resistance in man is still uncertain. The development of resistance in some human pathogens, such as methicillin-resistant Staphylococcus aureus and multi-drug resistant Mycobacterium tuberculosis, is linked to the use of antimicrobials in man and there is no evidence for animal involvement. However, there are several good examples of transfer of resistant bacteria or bacterial resistance genes from animals to man via the food chain. A bacterial ecosystem exists with simple and complex routes of transfer of resistance genes between the bacterial populations; in addition to transfer of organisms from animals to man, there is also evidence of resistance genes spilling back from humans into the animal population. This is important because of the amplification that can occur in animal populations. The most important factor in the selection of resistant bacteria is generally agreed to be usage of antimicrobial agents and in general, there is a close association between the quantities of antimicrobials used and the rate of development of resistance. The use of antimicrobials is not restricted to animal husbandry but also occurs in horticulture (for example, aminoglycosides in apple growing) and in some other industrial processes such as oil production.200212000617
411311.0000Antimicrobial resistance and the food chain. The extent to which antibiotics given to animals contribute to the overall problem of antibiotic resistance in man is still uncertain. The development of resistance in some human pathogens, such as methicillin-resistant Staphylococcus aureus and multi-drug resistant Mycobacterium tuberculosis, is linked to the use of antimicrobials in man and there is no evidence for animal involvement. However, there are several good examples of transfer of resistant bacteria or bacterial resistance genes from animals to man via the food chain. A bacterial ecosystem exists with simple and complex routes of transfer of resistance genes between the bacterial populations; in addition to transfer of organisms from animals to man, there is also evidence of resistance genes spilling back from humans into the animal population. This is important because of the amplification that can occur in animal populations. The most important factor in the selection of resistant bacteria is generally agreed to be usage of antimicrobial agents and in general, there is a close association between the quantities of antimicrobials used and the rate of development of resistance. The use of antimicrobials is not restricted to animal husbandry but also occurs in horticulture (for example, aminoglycosides in apple growing) and in some other industrial processes such as oil production.200212481833
411820.9999Antimicrobial resistance in livestock. Antimicrobial resistance may become a major problem in veterinary medicine as a consequence of the intensive use and misuse of antimicrobial drugs. Related problems are now arising in human medicine, such as the appearance of multi-resistant food-borne pathogens. Product characteristics, dose, treatment interval and duration of treatment influence the selection pressure for antimicrobial drug resistance. There are theoretical, experimental and clinical indications that the emergence of de novo resistance in a pathogenic population can be prevented by minimizing the time that suboptimal drug levels are present in the infected tissue compartment. Until recently, attention has been focused on target pathogens. However, it should be kept in mind that when antimicrobial drugs are used in an individual, resistance selection mainly affects the normal body flora. In the long term, this is at least equally important as resistance selection in the target pathogens, as the horizontal transfer of resistance genes converts almost all pathogenic bacteria into potential recipients for antimicrobial resistance. Other factors contributing to the epidemiology of antimicrobial resistance are the localization and size of the microbial population, and the age, immunity and contact intensity of the host. In livestock, dynamic herd-related resistance patterns have been observed in different animal species.200312667177
411630.9999Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. The use of antibiotics in food animals selects for bacteria resistant to antibiotics used in humans, and these might spread via the food to humans and cause human infection, hence the banning of growth-promoters. The actual danger seems small, and there might be disadvantages to human and to animal health. The low dosages used for growth promotion are an unquantified hazard. Although some antibiotics are used both in animals and humans, most of the resistance problem in humans has arisen from human use. Resistance can be selected in food animals, and resistant bacteria can contaminate animal-derived food, but adequate cooking destroys them. How often they colonize the human gut, and transfer resistance genes is not known. In zoonotic salmonellosis, resistance may arise in animals or humans, but human cross-infection is common. The case of campylobacter infection is less clear. The normal human faecal flora can contain resistant enterococci, but indistinguishable strains in animals and man are uncommon, possibly because most animal enterococci do not establish themselves in the human intestine. There is no correlation between the carriage of resistant enterococci of possible animal origin and human infection with resistant strains. Commensal Escherichia coli also exhibits host-animal preferences. Anti-Gram-positive growth promoters would be expected to have little effect on most Gram-negative organisms. Even if resistant pathogens do reach man, the clinical consequences of resistance may be small. The application of the 'precautionary principle' is a non-scientific approach that assumes that risk assessments will be carried out.200414657094
411940.9999How to modify conditions limiting resistance in bacteria in animals and other reservoirs. Antimicrobial agents in veterinary medicine are used for three purposes: therapy, prophylaxis, and nutrition. The major public health risk is that selection pressure leads to an increase in the pool of resistance genes. Since 1987, the nutritional use of antimicrobials in Europe has been regulated by a council directive, which demands special investigations into the potential of antimicrobials to increase rates of drug resistance. However, the prophylactic and therapeutic use of antimicrobials has sometimes led to the emergence of resistant bacteria. For example, the selective effect of the prophylactic use of gentamicin and the therapeutic use of quinolones led to the emergence of resistant salmonellae. To prevent the spread of resistant microorganisms from animals to humans, it should be recognized that antibiotics are not suitable as a compensation for poor hygiene standards or for the eradication of a pathogen from a certain environment. They should be used only by doctors or veterinarians.19978994793
404450.9999Antibiotic resistance in food-related bacteria--a result of interfering with the global web of bacterial genetics. A series of antibiotic resistance genes have been sequenced and found to be identical or nearly identical in various ecological environments. Similarly, genetic vectors responsible for assembly and mobility of antibiotic resistance genes, such as transposons, integrons and R plasmids of similar or identical type are also widespread in various niches of the environment. Many zoonotic bacteria carry antibiotic resistance genes directly from different food-producing environments to the human being. These circumstances may have a major impact on the degree for success in treating infectious diseases in man. Several recent examples demonstrate that use of antibiotics in all parts of the food production chain contributes to the increasing level of antibiotic resistance among the food-borne pathogenic bacteria. Modern industrialized food production adds extra emphasis on lowering the use of antibiotics in all parts of agriculture, husbandry and fish farming because these food products are distributed to very large numbers of humans compared to more traditional smaller scale niche production.200212222637
411560.9999Antibiotic Use for Growth Promotion in Animals: Ecologic and Public Health Consequences. Antibiotics have successfully treated infectious diseases in man, animals and agricultural plants. However, one consequence of usage at any level, subtherapeutic or therapeutic, has been selection of microorganisms resistant to these valuable agents. Today clinicians worldwide face singly resistant and multiply resistant bacteria which complicate treatment of even common infectious agents. This situation calls for a critical evaluation of the numerous ways in which antibiotics are being used so as to evaluate benefits and risks. About half of the antibiotics produced in the United States arc used in animals, chiefly in subtherapeutic amounts for growth promotion. This usage is for prolonged periods leading to selection of multiply-resistant bacteria which enter a common environmental pool. From there, resistance determinants from different sources spread from one bacterium to another, from one animal host to another, from one area to another. The same resistance determinants have been traced to many different genera associated with humans, animals and foods where they pose a continued threat to public health. Since alternative measures for growth promotion, such as antimicrobials which are not used for human therapy and which do not select for multiple-resistances are available, their use, instead of antibiotics, would remove a major factor contributing to the environmental pool of transferable resistance genes.198730965484
423170.9999Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. The worldwide use, and misuse, of antibiotics for about sixty years in the so-called antibiotic era, has been estimated in some one to ten million tons, a relevant part of which destined for non-therapeutic purposes such as growth promoting treatments for livestock or crop protection. As highly adaptable organisms, bacteria have reacted to this dramatic change in their environment by developing several well-known mechanisms of antibiotic resistance and are becoming increasingly resistant to conventional antibiotics. In recent years, commensal bacteria have become a cause of concern since they may act as reservoirs for the antibiotic resistance genes found in human pathogens. In particular, the food chain has been considered the main route for the introduction of animal and environment associated antibiotic resistant bacteria into the human gastrointestinal tract (GIT) where these genes may be transferred to pathogenic and opportunistic bacteria. As fundamental microbial communities in a large variety of fermented foods and feed, the anaerobe facultative, aerotolerant lactic acid bacteria (LAB) are likely to play a pivotal role in the resistance gene exchange occurring in the environment, food, feed and animal and human GIT. Therefore their antibiotic resistance features and their genetic basis have recently received increasing attention. The present article summarises the results of the latest studies on the most typical genera belonging to the low G + C branch of LAB. The evolution of the criteria established by European regulatory bodies to ensure a safe use of microorganisms in food and feed, including the assessment of their antibiotic resistance is also reviewed.201121515393
411780.9999Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Several lines of evidence indicate that the use of anti-microbial agents in food animals is associated with anti-microbial resistance among bacteria isolated from humans. The use of anti-microbial agents in food animals is most clearly associated with anti-microbial resistance among Salmonella and Campylobacter isolated from humans, but also appears likely among enterococci, Escherichia coli and other bacteria. Evidence is also accumulating that the anti-microbial resistance among bacteria isolated from humans could be the result of using anti-microbial agents in food animals and is leading to human health consequences. These human health consequences include: (i) infections that would not have otherwise occurred and (ii) increased frequency of treatment failures and increased severity of infection. Increased severity of infection includes longer duration of illness, increased frequency of bloodstream infections, increased hospitalization and increased mortality. Continued work and research efforts will provide more evidence to explain the connection between the use of anti-microbial agents in food animals and anti-microbial-resistant infections in humans. One particular focus, which would solidify this connection, is to understand the factors that dictate spread of resistance determinants, especially resistant genes. With continued efforts on the part of the medical, veterinary and public health community, such research may contribute to more precise guidelines on the use of anti-microbials in food animals.200415525369
418990.9999Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life.200617094710
4062100.9999Antibiotic resistance mechanisms in bacteria of oral and upper respiratory origin. Over the past 20 years, antibiotic resistance has increased in virtually every species of bacteria examined. In this paper, the main mechanisms of antibiotic resistance currently known for antibiotics used for treatment of disease caused by oral and upper respiratory bacteria will be reviewed, with an emphasis on the most commonly used antibiotics. The possible role that mercury, which is released from silver amalgams, plays in the oral/respiratory bacterial ecology is also discussed, as it relates to possible selection of antibiotic resistant bacteria.19989573495
4193110.9999Use of antimicrobial agents in veterinary medicine and food animal production. Antimicrobial resistance is a growing area of concern in both human and veterinary medicine. This review presents an overview of the use of antimicrobial agents in animals for therapeutic, metaphylactic, prophylactic and growth promotion purposes. In addition, factors favouring resistance development and transfer of resistance genes between different bacteria, as well as transfer of resistant bacteria between different hosts, are described with particular reference to the role of animals as a reservoir of resistance genes or resistant bacterial pathogens which may cause diseases in humans.200111397611
4071120.9999Antibiotic resistance in the environment: a link to the clinic? The emergence of resistance to all classes of antibiotics in previously susceptible bacterial pathogens is a major challenge to infectious disease medicine. The origin of the genes associated with resistance has long been a mystery. There is a growing body of evidence that is demonstrating that environmental microbes are highly drug resistant. The genes that make up this environmental resistome have the potential to be transferred to pathogens and indeed there is some evidence that at least some clinically relevant resistance genes have originated in environmental microbes. Understanding the extent of the environmental resistome and its mobilization into pathogenic bacteria is essential for the management and discovery of antibiotics.201020850375
4155130.9999Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.200211936257
4058140.9999Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim.201222849265
4060150.9999Current status of antibiotic resistance in animal production. It is generally accepted that the more antibiotics we use, the faster bacteria will develop resistance. Further it has been more or less accepted that once an antibiotic is withdrawn from the clinic, the resistance genes will eventually disappear, [table: see text] since they will no more be of any survival value for the bacterial cell. However, recent research has shown that after a long time period of exposure to antibiotics, certain bacterial species may adapt to this environment in such a way that they keep their resistance genes stably also after the removal of antibiotics. Thus, there is reason to believe that once resistance has developed it will not even in the long term be eradicated. What then can we do not to increase further the already high level of antibiotic-resistant bacteria in animals? We should of course encourage a prudent use of these valuable drugs. In Sweden antibiotics are not used for growth promoting purposes and are available only after veterinary prescription on strict indications. Generally, antimicrobial treatment of animals on individual or on herd basis should not be considered unless in connection with relevant diagnostics. The amounts of antibiotics used and the development of resistance in important pathogens should be closely monitored. Furthermore, resistance monitoring in certain non-pathogenic intestinal bacteria, which may serve as a reservoir for resistance genes is probably more important than hitherto anticipated. Once the usage of or resistance to a certain antibiotic seems to increase in an alarming way, steps should be taken to limit the usage of the drug in order to prevent further spread of resistance genes in animals, humans and the environment. Better methods for detecting and quantifying antibiotic resistance have to be developed. Screening methods must be standardized and evaluated in order to obtain comparable and reliable results from different countries. The genetic mechanisms for development of resistance and spread of resistance genes should be studied in detail. Research in these areas will lead to new ideas on how to inhibit the resistance mechanisms. So far, it has been well established that a heavy antimicrobial drug selective pressure in overcrowded populations of production animals creates favourable environments both for the emergence and the spread of antibiotic resistance genes.199910783714
4228160.9999Resistance to antibiotics in the normal flora of animals. The normal bacterial flora contains antibiotic resistance genes to various degrees, even in individuals with no history of exposure to commercially prepared antibiotics. Several factors seem to increase the number of antibiotic-resistant bacteria in feces. One important factor is the exposure of the intestinal flora to antibacterial drugs. Antibiotics used as feed additives seem to play an important role in the development of antibiotic resistance in normal flora bacteria. The use of avoparcin as a feed additive has demonstrated that an antibiotic considered "safe" is responsible for increased levels of antibiotic resistance in the normal flora enterococci of animals fed with avoparcin and possibly in humans consuming products from these animals. However, other factors like stress from temperature, crowding, and management also seem to contribute to the occurrence of antibiotic resistance in normal flora bacteria. The normal flora of animals has been studied with respect to the development of antibiotic resistance over four decades, but there are few studies with the intestinal flora as the main focus. The results of earlier studies are valuable when focused against the recent understanding of mobile genetics responsible for bacterial antibiotic resistance. New studies should be undertaken to assess whether the development of antibiotic resistance in the normal flora is directly linked to the dramatic increase in antibiotic resistance of bacterial pathogens. Bacteria of the normal flora, often disregarded scientifically, should be studied with the intention of using them as active protection against infectious diseases and thereby contributing to the overall reduction of use of antibioties in both animals and humans.200111432415
4066170.9999Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences.201323343983
4019180.9999Antimicrobial resistance in humans, livestock and the wider environment. Antimicrobial resistance (AMR) in humans is inter-linked with AMR in other populations, especially farm animals, and in the wider environment. The relatively few bacterial species that cause disease in humans, and are the targets of antibiotic treatment, constitute a tiny subset of the overall diversity of bacteria that includes the gut microbiota and vast numbers in the soil. However, resistance can pass between these different populations; and homologous resistance genes have been found in pathogens, normal flora and soil bacteria. Farm animals are an important component of this complex system: they are exposed to enormous quantities of antibiotics (despite attempts at reduction) and act as another reservoir of resistance genes. Whole genome sequencing is revealing and beginning to quantify the two-way traffic of AMR bacteria between the farm and the clinic. Surveillance of bacterial disease, drug usage and resistance in livestock is still relatively poor, though improving, but achieving better antimicrobial stewardship on the farm is challenging: antibiotics are an integral part of industrial agriculture and there are very few alternatives. Human production and use of antibiotics either on the farm or in the clinic is but a recent addition to the natural and ancient process of antibiotic production and resistance evolution that occurs on a global scale in the soil. Viewed in this way, AMR is somewhat analogous to climate change, and that suggests that an intergovernmental panel, akin to the Intergovernmental Panel on Climate Change, could be an appropriate vehicle to actively address the problem.201525918441
4335190.9999Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different European countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly and in general decreases in resistance have followed. Guidelines for prudent use of antimicrobial agents may help to slow down the selection for resistance and should be based on knowledge regarding the normal susceptibility patterns of the causative agents and take into account the potential problems for human health. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection of resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine.200515755309