# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 409 | 0 | 1.0000 | A Novel Plasmid Entry Exclusion System in pKPC_UVA01, a Promiscuous Conjugative Plasmid Carrying the bla(KPC) Carbapenemase Gene. Conjugative plasmids are the principal mediator in the emergence and spread of antibiotic resistance genes in Enterobacterales. Plasmid entry exclusion (EEX) systems can restrict their transfer into the recipient bacteria carrying closely related plasmids. In this study, we identified and characterized a novel plasmid entry exclusion system in a carbapenem resistance plasmid pKPC_UVA01, which is responsible for widespread dissemination of the bla(KPC) carbapenemase gene among Enterobacterales in the United States. The identified eex gene in the recipient strain of different Enterobacterales species inhibited the conjugation transfer of pKPC_UVA01 plasmids at a range of 200- to 400-fold, and this inhibition was found to be a dose-dependent function of the EEX protein in recipient cells. The C terminus truncated version of eex or eex with an early termination codon at the C terminus region alleviated the inhibition of conjugative transfer. Unlike the strict specificity of plasmid exclusion by the known EEX protein, the newly identified EEX in the recipient strain could inhibit the transfer of IncP and IncN plasmids. The eex gene from the plasmid pKPC_UVA01 was not required for conjugative transfer but was essential in the donor bacteria for entry exclusion of this plasmid. This was a novel function of a single protein that is essential in both donor and recipient bacteria for the entry exclusion of a plasmid. This eex gene is found to be distributed in multidrug resistance plasmids similar to pKPC_UVA01 in different Enterobacterales species and may contribute to the stability of this plasmid type by controlling its transfer. | 2022 | 35007138 |
| 9973 | 1 | 0.9994 | Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOB(F12)A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOB(F12)A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOB(F12)A group of conjugative plasmids. | 2018 | 30022749 |
| 408 | 2 | 0.9994 | Deletion of pcnB affects antibiotic susceptibility in resistant Escherichia coli by reducing copy number of ColE1-family plasmids. Plasmids play a major role in the spread of antibiotic resistance genes in bacteria. Plasmid copy number (PCN) is often tightly regulated. In plasmids of the ColE1-type, this regulation happens by a negative feedback mechanism using an antisense RNA. Here, we employed a sequencing-based method for determining PCN to demonstrate that copy number of different ColE1-family plasmids harboring antibiotic resistance genes increases during antibiotic treatment. Further, we show that deletion of the gene pcnB reduces the copy number of ColE1-family plasmids in E. coli MG1655, which in turn results in a reduced resistance to antimicrobials of the classes aminoglycosides, β-lactams and tetracyclines. In the absence of antibiotic selection, the deletion of pcnB also decreased the number of ColE1-type plasmids in a bacterial population. Hence, PcnB, which polyadenylates RNA, marking it for decay, represents a potential drug and helper-drug target that could be used to reduce PCN to re-sensitize bacteria with multi-copy-number resistance-plasmids to treatment with different antimicrobials. | 2025 | 40069245 |
| 9939 | 3 | 0.9994 | Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. OBJECTIVES: In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS: A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS: This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS: The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes. | 2021 | 34613377 |
| 9883 | 4 | 0.9994 | Plasmids in Gram negatives: molecular typing of resistance plasmids. A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. | 2011 | 21992746 |
| 4467 | 5 | 0.9993 | PCR mapping of integrons reveals several novel combinations of resistance genes. The integron is a new type of mobile element which has evolved by a site-specific recombinational mechanism. Integrons consist of two conserved segments of DNA separated by a variable region containing one or more genes integrated as cassettes. Oligonucleotide probes specific for the conserved segments have revealed that integrons are widespread in recently isolated clinical bacteria. Also, by using oligonucleotide probes for several antibiotic resistance genes, we have found novel combinations of resistance genes in these strains. By using PCR, we have determined the content and order of the resistance genes inserted between the conserved segments in the integrons of these clinical isolates. PCR mapping of integrons can be a useful epidemiological tool to study the evolution of multiresistance plasmids and transposons and dissemination of antibiotic resistance genes. | 1995 | 7695304 |
| 9822 | 6 | 0.9993 | Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Transposition is proposed to be responsible for the rapid evolution of multiply drug-resistant bacterial strains. Transposons, which carry the genes encoding drug resistance, are linear pieces of DNA that range in size from 2.5 to 23 kilobase pairs and always contain at their ends nucleotide sequences repeated in inverse order. In some transposons the terminal inverted repeat sequences are capable of independent movement and are called insertion sequences. Transposons carry a gene that encodes transposase(s), the enzyme(s) responsible for recombination of the transposon into another DNA molecule. Studies on transposable genetic elements in bacteria have not only given insight into the spread of antibiotic resistance but also into the process of DNA movement. | 1987 | 3035697 |
| 4469 | 7 | 0.9993 | Integrons: an antibiotic resistance gene capture and expression system. Bacteria can transfer genetic information to provide themselves with protection against most antibiotics. The acquisition of resistance gene arrays involves genetic mobile elements like plasmids and transposons. Another class of genetic structures, termed integrons, have been described and contain one or more gene cassettes located at a specific site. Integrons are defined by an intl gene encoding an integrase, a recombination site attl and a strong promoter. At least six classes of integrons have been determined according to their intl gene. Classes 1, 2 and 3 are the most studied and are largely implicated in the dissemination of antibiotic resistance. A gene cassette includes an open reading frame and, at the 3'-end, a recombination site attC. Integration or excision of cassettes occur by a site-specific recombination mechanism catalyzed by the integrase. However, insertion can occur, albeit rarely, at non-specific sites leading to a stable situation for the cassette. Cassettes are transcribed from the common promoter located in the 5'-conserved segment and expression of distal genes is reduced by the presence of upstream cassettes. Most gene cassettes encode antibiotic resistant determinants but antiseptic resistant genes have also been described. Integrons seem to have a major role in the spread of multidrug resistance in gram-negative bacteria but integrons in gram-positive bacteria were described recently. Moreover, the finding of super-integrons with gene-cassettes coding for other determinants (biochemical functions, virulence factors) in Vibrio isolates dating from 1888 suggests the likely implication of this multicomponent cassette-integron system in bacterial genome evolution before the antibiotic era and to a greater extent than initially believed. | 2000 | 10987194 |
| 451 | 8 | 0.9993 | Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerC(Ab) and XerD(Ab)) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerC(Ab), indicating that the first step in the recombination reaction took place. The results described show that XerC(Ab) and XerD(Ab) are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria. | 2020 | 32668667 |
| 9829 | 9 | 0.9993 | Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria. | 1984 | 6143782 |
| 411 | 10 | 0.9993 | A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China. | 2021 | 33721023 |
| 9975 | 11 | 0.9993 | Detection of Horizontal Gene Transfer Mediated by Natural Conjugative Plasmids in E. coli. Conjugation represents one of the main mechanisms facilitating horizontal gene transfer in Gram-negative bacteria. This work describes methods for the study of the mobilization of naturally occurring conjugative plasmids, using two naturally-occurring plasmids as an example. These protocols rely on the differential presence of selectable markers in donor, recipient, and conjugative plasmid. Specifically, the methods described include 1) the identification of natural conjugative plasmids, 2) the quantification of conjugation rates in solid culture, and 3) the diagnostic detection of the antibiotic resistance genes and plasmid replicon types in transconjugant recipients by polymerase chain reaction (PCR). The protocols described here have been developed in the context of studying the evolutionary ecology of horizontal gene transfer, to screen for the presence of conjugative plasmids carrying antibiotic-resistance genes in bacteria found in the environment. The efficient transfer of conjugative plasmids observed in these experiments in culture highlights the biological relevance of conjugation as a mechanism promoting horizontal gene transfer in general and the spread of antibiotic resistance in particular. | 2023 | 37036197 |
| 9831 | 12 | 0.9993 | An antiplasmid system drives antibiotic resistance gene integration in carbapenemase-producing Escherichia coli lineages. Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase bla(OXA-48) gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion. | 2024 | 38750030 |
| 9888 | 13 | 0.9993 | Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally. | 2018 | 30081066 |
| 4468 | 14 | 0.9993 | Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. In Gram-negative pathogens, multiple antibiotic resistance is common and many of the known resistance genes are contained in mobile gene cassettes. Cassettes can be integrated into or deleted from their receptor elements, the integrons, or infrequently may be integrated at other locations via site-specific recombination catalysed by an integron-encoded recombinase. As a consequence, arrays of several different antibiotic resistance genes can be created. Over 40 gene cassettes and three distinct classes of integrons have been identified to date. Cassette-associated genes conferring resistance to beta-lactams, aminoglycosides, trimethoprim, chloramphenicol, streptothricin and quaternary ammonium compounds used as antiseptics and disinfectants have been found. In addition, most members of the commonest family of integrons (class 1) include a sulfonamide resistance determinant in the backbone structure. Integrons are themselves translocatable, though most are defective transposon derivatives. Integron movement allows transfer of the cassette-associated resistance genes from one replicon to another or into another active transposon which facilitates spread of integrons that are transposition defective. Horizontal transfer of the resistance genes can be achieved when an integron containing one or more such genes is incorporated into a broad-host-range plasmid. Likewise, single cassettes integrated at secondary sites in a broad-host-range plasmid can also move across species boundaries. | 1997 | 9189642 |
| 9965 | 15 | 0.9993 | The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans. | 2012 | 22326849 |
| 3005 | 16 | 0.9993 | Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. The insertion sequence IS26 plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency. Importance: Resistance to antibiotics belonging to several of the different classes used to treat infections is a critical problem. Multiply antibiotic-resistant bacteria usually carry large regions containing several antibiotic resistance genes, and in Gram-negative bacteria, IS26 is often seen in these clusters. A model to explain the unusual structure of regions containing multiple IS26 copies, each associated with a resistance gene, was not available, and the mechanism of their formation was unexplored. IS26-flanked structures deceptively resemble class I transposons, but this work reveals that the features of IS26 movement do not resemble those of the IS and class I transposons studied to date. IS26 uses a novel movement mechanism that defines a new family of mobile genetic elements that we have called "translocatable units." The IS26 mechanism also explains the properties of IS257 (IS431) and IS1216, which belong to the same IS family and mobilize resistance genes in Gram-positive staphylococci and enterococci. | 2014 | 25293759 |
| 9971 | 17 | 0.9993 | Outer membrane vesicles secreted from Actinobacillus pleuropneumoniae isolate disseminating the floR resistance gene to Enterobacteriaceae. Actinobacillus pleuropneumoniae, a significant respiratory pig pathogen, is causing substantial losses in the global swine industry. The resistance spectrum of A. pleuropneumoniae is expanding, and multidrug resistance is a severe issue. Horizontal gene transfer (HGT) plays a crucial role in the development of the bacterial genome by facilitating the dissemination of resistance determinants. However, the horizontal transfer of resistance genes via A. pleuropneumoniae-derived outer membrane vesicles (OMVs) has not been previously reported. In this study, we used Illumina NovaSeq and PacBio SequeI sequencing platforms to determine the whole genome sequence of A. pleuropneumoniae GD2107, a multidrug-resistant (MDR) isolate from China. We detected a plasmid in the isolate named pGD2107-1; the plasmid was 5,027 bp in size with 7 putative open reading frames (ORF) and included the floR resistance genes. The carriage of resistance genes in A. pleuropneumoniae OMVs was identified using a polymerase chain reaction (PCR) assay, and then we thoroughly evaluated the influence of OMVs on the horizontal transfer of drug-resistant plasmids. The transfer of the plasmid to recipient bacteria via OMVs was confirmed by PCR. In growth competition experiments, all recipients carrying the pGD2107-1 plasmid exhibited a fitness cost compared to the corresponding original recipients. This study revealed that OMVs could mediate interspecific horizontal transfer of the resistance plasmid pGD2107-1 into Escherichia coli recipient strains and significantly enhance the resistance of the transformants. In summary, A. pleuropneumoniae-OMVs play the pivotal role of vectors for dissemination of the floR gene spread and may contribute to more antimicrobial resistance gene transfer in other Enterobacteriaceae. | 2024 | 39301187 |
| 4465 | 18 | 0.9993 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 3798 | 19 | 0.9993 | Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli. The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections. | 2022 | 35336183 |