# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4086 | 0 | 1.0000 | Insights into antibiotic resistance through metagenomic approaches. The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches. | 2012 | 22191448 |
| 4088 | 1 | 0.9999 | Expanding the soil antibiotic resistome: exploring environmental diversity. Antibiotic resistance has largely been studied in the context of failure of the drugs in clinical settings. There is now growing evidence that bacteria that live in the environment (e.g. the soil) are multi-drug-resistant. Recent functional screens and the growing accumulation of metagenomic databases are revealing an unexpected density of resistance genes in the environment: the antibiotic resistome. This challenges our current understanding of antibiotic resistance and provides both barriers and opportunities for antimicrobial drug discovery. | 2007 | 17951101 |
| 4087 | 2 | 0.9999 | Next-generation approaches to understand and combat the antibiotic resistome. Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats. | 2017 | 28392565 |
| 4085 | 3 | 0.9999 | The antibiotic resistome. IMPORTANCE OF THE FIELD: Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. AREAS COVERED IN THIS REVIEW: The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. WHAT THE READER WILL GAIN: The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. TAKE HOME MESSAGE: The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries. | 2010 | 22827799 |
| 4015 | 4 | 0.9999 | Bacteriophages as Environmental Reservoirs of Antibiotic Resistance. Although antibiotic resistance represents a significant and growing public health concern, the contribution of bacteriophages (phages) to the mobilization of antibiotic resistance genes (ARGs) in the environment has not been extensively studied. Recent studies, however, suggest that phages play an important role in the acquisition, maintenance, and spread of ARGs than previously expected. This Opinion article offers an update on the contribution of phages to environmental antibiotic resistance. A better understanding of the mechanisms and factors that promote antibiotic resistance may significantly contribute to the implementation of control strategies. | 2019 | 30905524 |
| 4091 | 5 | 0.9999 | Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development. | 2014 | 25278933 |
| 4016 | 6 | 0.9999 | Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR. | 2022 | 34894259 |
| 9703 | 7 | 0.9999 | Ecology and evolution of antibiotic resistance. The evolution of bacterial pathogens towards antibiotic resistance is not just a relevant problem for human health, but a fascinating example of evolution that can be studied in real time as well. Although most antibiotics are natural compounds produced by environmental microbiota, exposure of bacterial populations to high concentrations of these compounds as the consequence of their introduction for human therapy (and later on for farming) a few decades ago is a very recent situation in evolutionary terms. Resistance genes are originated in environmental bacteria, where they have evolved for millions of years to play different functions that include detoxification, signal trafficking or metabolic functions among others. However, as the consequence of the strong selective pressure exerted by antimicrobials at clinical settings, farms and antibiotic-contaminated natural ecosystems, the selective forces driving the evolution of these potential resistance determinants have changed in the last few decades. Natural ecosystems contain a large number of potential resistance genes; nevertheless, just a few of them are currently present in gene-transfer units and disseminated among pathogens. Along the review, the processes implied in this situation and the consequences for the future evolution of resistance and the environmental microbiota are discussed. | 2009 | 23765924 |
| 4068 | 8 | 0.9999 | Co-selection for antibiotic resistance by environmental contaminants. The environment is increasingly recognised as a hotspot for the selection and dissemination of antibiotic resistant bacteria and antibiotic resistance genes. These can be selected for by antibiotics and non-antibiotic agents (such as metals and biocides), with the evidence to support this well established by observational and experimental studies. However, there is emerging evidence to suggest that plant protection products (such as herbicides), and non-antibiotic drugs (such as chemotherapeutic agents), can also co-select for antibiotic resistance. This review aims to provide an overview of four classes of non-antibiotic agents (metals, biocides, plant protection products, and non-antibiotic drugs) and how they may co-select for antibiotic resistance, with a particular focus on the environment. It also aims to identify key knowledge gaps that should be addressed in future work, to better understand these potential co-selective agents. | 2024 | 39843965 |
| 9482 | 9 | 0.9999 | Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans. | 2011 | 21517914 |
| 4074 | 10 | 0.9999 | Selection and Transmission of Antibiotic-Resistant Bacteria. Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages. | 2017 | 28752817 |
| 4070 | 11 | 0.9999 | Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens. | 2018 | 30555448 |
| 9480 | 12 | 0.9999 | Antibiotic resistance: it's bad, but why isn't it worse? Antibiotic natural products are ancient and so is resistance. Consequently, environmental bacteria harbor numerous and varied antibiotic resistance elements. Nevertheless, despite long histories of antibiotic production and exposure, environmental bacteria are not resistant to all known antibiotics. This means that there are barriers to the acquisition of a complete resistance armamentarium. The sources, distribution, and movement of resistance mechanisms in different microbes and bacterial populations are mosaic features that act as barriers to slow this movement, thus moderating the emergence of bacterial pan-resistance. This is highly relevant to understanding the emergence of resistance in pathogenic bacteria that can inform better antibiotic management practices and influence new drug discovery. | 2017 | 28915805 |
| 9702 | 13 | 0.9999 | The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Antibiotics are among the most valuable compounds used for fighting human diseases. Unfortunately, pathogenic bacteria have evolved towards resistance. One important and frequently forgotten aspect of antibiotics and their resistance genes is that they evolved in non-clinical (natural) environments before the use of antibiotics by humans. Given that the biosphere is mainly formed by micro-organisms, learning the functional role of antibiotics and their resistance elements in nature has relevant implications both for human health and from an ecological perspective. Recent works have suggested that some antibiotics may serve for signalling purposes at the low concentrations probably found in natural ecosystems, whereas some antibiotic resistance genes were originally selected in their hosts for metabolic purposes or for signal trafficking. However, the high concentrations of antibiotics released in specific habitats (for instance, clinical settings) as a consequence of human activity can shift those functional roles. The pollution of natural ecosystems by antibiotics and resistance genes might have consequences for the evolution of the microbiosphere. Whereas antibiotics produce transient and usually local challenges in microbial communities, antibiotic resistance genes present in gene-transfer units can spread in nature with consequences for human health and the evolution of environmental microbiota that are largely ignored. | 2009 | 19364732 |
| 6684 | 14 | 0.9999 | An African perspective on the prevalence, fate and effects of carbapenem resistance genes in hospital effluents and wastewater treatment plant (WWTP) final effluents: A critical review. This article provides an overview of the antibiotic era and discovery of earliest antibiotics until the present day state of affairs, coupled with the emergence of carbapenem-resistant bacteria. The ways of response to challenges of antibiotic resistance (AR) such as the development of novel strategies in the search of new antibiotics, designing more effective preventive measures as well as the ecology of AR have been discussed. The applications of plant extract and chemical compounds like nanomaterials which are based on recent developments in the field of antimicrobials, antimicrobial resistance (AMR), and chemotherapy were briefly discussed. The agencies responsible for environmental protection have a role to play in dealing with the climate crisis which poses an existential threat to the planet, and contributes to ecological support towards pathogenic microorganisms. The environment serves as a reservoir and also a vehicle for transmission of antimicrobial resistance genes hence, as dominant inhabitants we have to gain a competitive advantage in the battle against AMR. | 2020 | 32420480 |
| 4090 | 15 | 0.9999 | Ancient Resistome. Antibiotic resistance is an ancient biological mechanism in bacteria, although its proliferation in our contemporary world has been amplified through antimicrobial therapy. Recent studies conducted on ancient environmental and human samples have uncovered numerous antibiotic-resistant bacteria and resistance genes. The resistance genes that have been reported from the analysis of ancient bacterial DNA include genes coding for several classes of antibiotics, such as glycopeptides, β-lactams, tetracyclines, and macrolides. The investigation of the resistome of ancient bacteria is a recent and emerging field of research, and technological advancements such as next-generation sequencing will further contribute to its growth. It is hoped that the knowledge gained from this research will help us to better understand the evolution of antibiotic resistance genes and will also be used in drug design as a proactive measure against antibiotic resistance. | 2016 | 27726801 |
| 9694 | 16 | 0.9999 | Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem. | 2013 | 23404545 |
| 9701 | 17 | 0.9999 | Environmental factors influencing the development and spread of antibiotic resistance. Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans. | 2018 | 29069382 |
| 9686 | 18 | 0.9999 | Selective pressures for public antibiotic resistance. The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development. | 2025 | 39158370 |
| 4022 | 19 | 0.9999 | Antibiotic resistance in the environment. Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks. | 2022 | 34737424 |