# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4084 | 0 | 1.0000 | Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes. | 2017 | 28676794 |
| 4070 | 1 | 0.9999 | Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens. | 2018 | 30555448 |
| 4069 | 2 | 0.9999 | Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view. | 2021 | 34360847 |
| 4240 | 3 | 0.9999 | Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine. | 2006 | 17127523 |
| 4046 | 4 | 0.9999 | Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. The evolution of multidrug resistant bacteria to the most diverse antimicrobials known so far pose a serious problem to global public health. Currently, microorganisms that develop resistant phenotypes to multiple drugs are associated with high morbidity and mortality. This resistance is encoded by a group of genes termed 'bacterial resistome', divided in intrinsic and extrinsic resistome. The first one refers to the resistance displayed on an organism without previous exposure to an antibiotic not involving horizontal genetic transfer, and it can be acquired via mutations. The latter, on the contrary, is acquired exclusively via horizontal genetic transfer involving mobile genetic elements that constitute the 'bacterial mobilome'. This transfer is mediated by three different mechanisms: transduction, transformation, and conjugation. Recently, a problem of public health due to implications in the emergence of multi-drug resistance in Aeromonas spp. strains in water environments has been described. This is derived from the genetic material transfer via conjugation events. This is important, since bacteria that have acquired antibiotic resistance in natural environments can cause infections derived from their ingestion or direct contact with open wounds or mucosal tissue, which in turn, by their resistant nature, makes their eradication complex. Implications of the emergence of resistance in Aeromonas spp. by horizontal gene transfer on public health are discussed. | 2019 | 31540466 |
| 4189 | 5 | 0.9999 | Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life. | 2006 | 17094710 |
| 4043 | 6 | 0.9999 | Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products. In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance. | 2016 | 27383577 |
| 4201 | 7 | 0.9999 | Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Resistance to therapeutic antimicrobial agents is recognized as a growing problem for both human and veterinary medicine, and the need to address the issue in both of these linked domains is a current priority in public policy. Efforts to limit antimicrobial resistance (AMR) on farms have so far focused on control of the supply and use of antimicrobial drugs, plus husbandry measures to reduce infectious disease. In the United Kingdom and some other countries, substantial progress has been made recently against targets on agricultural antimicrobial drug use. However, evidence suggests that resistant pathogenic and commensal bacteria can persist and spread within and between premises despite declining or zero antimicrobial drug use. Reasons for this are likely complex and varied but may include: bacterial adaptations to ameliorate fitness costs associated with maintenance and replication of resistance genes and associated proteins, horizontal transmission of genetic resistance determinants between bacteria, physical transfer of bacteria via movement (of animals, workers, and equipment), ineffective cleaning and disinfection, and co-selection of resistance to certain drugs by use of other antimicrobials, heavy metals, or biocides. Areas of particular concern for public health include extended-spectrum cephalosporinases and fluoroquinolone resistance among Enterobacteriaceae, livestock-associated methicillin-resistant Staphylococcus aureus, and the emergence of transmissible colistin resistance. Aspects of biosecurity have repeatedly been identified as risk factors for the presence of AMR on farm premises, but there are large gaps in our understanding of the most important risk factors and the most effective interventions. The present review aims to summarize the present state of knowledge in this area, from a European perspective. | 2019 | 33336931 |
| 4073 | 8 | 0.9999 | The Spread of Antibiotic Resistance Genes In Vivo Model. Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions. | 2022 | 35898691 |
| 4083 | 9 | 0.9999 | Antibiotic resistance gene discovery in food-producing animals. Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses. | 2014 | 24994584 |
| 4047 | 10 | 0.9999 | Integron involvement in environmental spread of antibiotic resistance. The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.). | 2012 | 22509175 |
| 4058 | 11 | 0.9999 | Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim. | 2012 | 22849265 |
| 4157 | 12 | 0.9999 | Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Multidrug resistance among pathogenic bacteria is imperilling the worth of antibiotic infection, which has become an emerging problem, which previously transformed the veterinary sciences. Since its discovery, many antibiotics have been effective in treating bacterial infections in animals. Escherichia coli, a bacterium, is one of the reservoirs of antibiotic resistance genes in a community. The current use of antibiotics and demographic factors usually increase multidrug resistance. Genetically, the continuous adoption of environmental changes by E. coli allows it to acquire many multidrug resistance. During the host's life, antimicrobial resistance rarely poses a threat to the E. coli strain and pressure, similar to that of a flexible animal lower intestine. In this review, we describe the E. coli antibiotic drug-resistance mechanism driving transmission, the causes of transmission and the harmful effects on animal health. | 2022 | 35608149 |
| 4067 | 13 | 0.9999 | Metal Resistance and Its Association With Antibiotic Resistance. Antibiotic resistance is recognised as a major global threat to public health by the World Health Organization. Currently, several hundred thousand deaths yearly can be attributed to infections with antibiotic-resistant bacteria. The major driver for the development of antibiotic resistance is considered to be the use, misuse and overuse of antibiotics in humans and animals. Nonantibiotic compounds, such as antibacterial biocides and metals, may also contribute to the promotion of antibiotic resistance through co-selection. This may occur when resistance genes to both antibiotics and metals/biocides are co-located together in the same cell (co-resistance), or a single resistance mechanism (e.g. an efflux pump) confers resistance to both antibiotics and biocides/metals (cross-resistance), leading to co-selection of bacterial strains, or mobile genetic elements that they carry. Here, we review antimicrobial metal resistance in the context of the antibiotic resistance problem, discuss co-selection, and highlight critical knowledge gaps in our understanding. | 2017 | 28528649 |
| 4042 | 14 | 0.9999 | Integrons in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes. The human intestinal microbiota plays a major beneficial role in immune development and resistance to pathogens. The use of antibiotics, however, can cause the spread of antibiotic resistance genes within the resident intestinal microbiota. Important vectors for this are integrons. This review therefore focuses on the integrons in non-pathogenic bacteria as a potential source for the development and persistence of multidrug resistance. Integrons are a group of genetic elements which are assembly platforms that can capture specific gene cassettes and express them. Integrons in pathogenic bacteria have been extensively investigated, while integrons in the intestinal microbiota have not yet gained much attention. Knowledge of the integrons residing in the microbiota, however, can potentially aid in controlling the spread of antibiotic resistance genes to pathogens. | 2014 | 25437798 |
| 4095 | 15 | 0.9999 | Antimicrobial resistance: more than 70 years of war between humans and bacteria. Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article). | 2020 | 32954887 |
| 4071 | 16 | 0.9999 | Antibiotic resistance in the environment: a link to the clinic? The emergence of resistance to all classes of antibiotics in previously susceptible bacterial pathogens is a major challenge to infectious disease medicine. The origin of the genes associated with resistance has long been a mystery. There is a growing body of evidence that is demonstrating that environmental microbes are highly drug resistant. The genes that make up this environmental resistome have the potential to be transferred to pathogens and indeed there is some evidence that at least some clinically relevant resistance genes have originated in environmental microbes. Understanding the extent of the environmental resistome and its mobilization into pathogenic bacteria is essential for the management and discovery of antibiotics. | 2010 | 20850375 |
| 4072 | 17 | 0.9999 | A horizontal transmission of genetic information and its importance for development of antibiotics resistance. Genetic information is transmitted among organisms through two pathways - vertically from generation to generation (from parents to progeny) and horizontally (laterally) by direct exchange of genetic material across species barriers. These are primarily prokaryotes, in which the exchange of genes or whole gene segments by horizontal transmission is quite common. They can dynamically and in a relatively short time generate highly diverse genomes, which does not allow the vertical transmission. As a result, prokaryotes can rapidly acquire new properties such as virulence and pathogenicity as well as resistance to toxins, including antibiotics, by which they increase their adaptability. Therefore, reinfection-resistant microorganisms are always more difficult to treat than infections caused by non-resistant bacteria. Antibiotic resistance today is a global problem of health care service. Not only does the number of diseases caused by resistant pathogenic strains of bacteria increase, but also the cost of treatment increases disproportionately, the length of hospitalization is prolonged, and mortality is often rising. Therefore, when indicating antibiotic therapy, it is important to keep in mind that both overuse and abuse of antibiotics contribute to the spread of antibiotic resistance genes. This is equally true for antibiotic applications in veterinary medicine, agriculture, including aquacultures, or in the food industry. Keywords: horizontal transmission of genetic information, endosymbiosis, antibiotic resistance, risks of the emergence and spread of antibiotic resistance, prevention of antibiotic resistance. | 2018 | 30441943 |
| 4044 | 18 | 0.9999 | Antibiotic resistance in food-related bacteria--a result of interfering with the global web of bacterial genetics. A series of antibiotic resistance genes have been sequenced and found to be identical or nearly identical in various ecological environments. Similarly, genetic vectors responsible for assembly and mobility of antibiotic resistance genes, such as transposons, integrons and R plasmids of similar or identical type are also widespread in various niches of the environment. Many zoonotic bacteria carry antibiotic resistance genes directly from different food-producing environments to the human being. These circumstances may have a major impact on the degree for success in treating infectious diseases in man. Several recent examples demonstrate that use of antibiotics in all parts of the food production chain contributes to the increasing level of antibiotic resistance among the food-borne pathogenic bacteria. Modern industrialized food production adds extra emphasis on lowering the use of antibiotics in all parts of agriculture, husbandry and fish farming because these food products are distributed to very large numbers of humans compared to more traditional smaller scale niche production. | 2002 | 12222637 |
| 4192 | 19 | 0.9999 | Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. | 2013 | 23805136 |