Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
40701.0000Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.19921328813
40310.9993Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons.19873037534
40620.9992Naturally occurring macrolide-lincosamide-streptogramin B resistance in Bacillus licheniformis. Resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics is widespread and of clinical importance. B. Weisblum and his coworkers have demonstrated that this resistance is associated with methylation of the 23S ribosomal ribonucleic acid of the large ribosomal subunit which results in a diminished affinity of this organelle for these antibiotics (Lai et al, J. Mol. Biol. 74:67-72, 1973). We report that 10 of 15 natural isolates of Bacillus licheniformis, a common soil organism, are resistant to the MLS antibiotics. The properties of this resistance (high level of tolerance for erythromycin, broad cross-resistance spectrum, and inducibility) suggest that resistance is conferred as described above. The resistance determinant from one of these strains was cloned onto a B. subtilis plasmid vector, and the resulting hybrid plasmid (pBD90) was used to prepare radioactive probe deoxyribonucleic acid for hybridization studies. All of the resistance B. licheniformis strains studied exhibited homology with the pBD90 insert. Plasmid pBD90 showed no homology to the following staphylococcal and streptococcal MLS-resistance plasmids: pE194, pE5, pAM77, pI258. Plasmids pE194 and pE5, on the other hand, carry homologous MLS genes but showed no detectable homology to one another in their replication genes. pBD90 specified a 35,000-dalton erythromycin-inducible protein, detectable in minicells, which therefore appears different from the 29,000-dalton inducible resistance protein specified by pE194. We conclude that there are at least three distinct MLS resistance determinants to be found among gram-positive bacteria.19816780509
40230.9992The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. Antibiotic resistance in C. difficile by efflux has been previously suggested. The genome of C. difficile 630 was screened for sequences encoding putative proteins homologous to NorA from Staphylococcus aureus. Four ORFs homologous to efflux genes were cloned into the pAT79 shuttle vector under the control of transcription and translation signals of Gram-positive bacteria and expressed in Enterococcus faecalis JH2-2 and S. aureus RN4220. One of these sequences, designated cme conferred resistance to ethidium bromide, safranin O, and erythromycin in E. faecalis. The three other ORFs did not confer detectable resistance in both bacteria.200415336408
305240.9991Expression of antibiotic resistance genes from Escherichia coli in Bacillus subtilis. Bifunctional recombinant plasmids were constructed, comprised of the E. coli vectors pBR322, pBR325 and pACYC184 and different plasmids from Gram-positive bacteria, e.g. pBSU161-1 of B. subtilis and pUB110 and pC221 of S. aureus. The beta-lactamase (bla) gene and the chloramphenicol acetyltransferase (cat) gene from the E. coli plasmids were not transcribed and therefore not expressed in B. subtilis. However, tetracycline resistance from the E. coli plasmids was expressed in B. subtilis. Transcription of the tetracycline resistance gene(s) started in B. subtilis at or near the original E. coli promoter, the sequence of which is almost identical with the sequence recognized by sigma 55 of B. subtilis RNA polymerase.19836410152
40550.9990Characterization of a small plasmid (pMBCP) from bovine Pseudomonas pickettii that confers cadmium resistance. This is the first report of isolation of Pseudomonas pickettii from a normal adult bovine duodenum. This organism was one of several bacteria isolated as part of a study to examine cadmium resistance genes (cad(r)) for use in generating transgenic plants to reclaim cadmium-contaminated soils in Kansas. P. pickettii containing a plasmid of 2.2kb (designated pMBCP) grew in Luria-Bertani broth and agar containing up to 800 microM of cadmium chloride and was resistant to 16 antibiotics. Curing the organism of plasmid revealed that antibiotic resistances were not plasmid-mediated. Low-level cadmium resistance was conferred by the plasmid because uncured organism grew significantly better (P<0.05) at 55 microM compared to cured organism. Both plasmid and chromosomal DNA were probed by DNA-DNA hybridization for the presence of known cadmium resistance genes (cadA, cadC, and cadD from Gram-positive (Staphylococcus aureus), but none were detected. The plasmid had one restriction site each for BamHI, PstI, SmaI, and XhoI; two sites each for HincII, SacI, and SphI; and multiple sites for AluI and XcmI. DNA sequence analyses of the cloned and original plasmids showed a GC content of greater than 60% and no homology to any published sequences in the GenBank, European Bioinformatics Institute, or Japanese Genome Net databases. The DNA sequence is contained in GenBank accession number AF144733. Thus, pMBCP offers low-level cadmium resistance to P. picketttii.200312651180
49060.9990Mercuric resistance genes in gram-positive oral bacteria. Mercury-resistant bacteria isolated from the oral cavities of children carried one of two types of merA gene that appear to have evolved from a common ancestor. Streptococcus oralis, Streptococcus mitis and a few other species had merA genes that were very similar to merA of Bacillus cereus strain RC607. Unlike the B. cereus RC607 merA gene, however, the streptococcal merA genes were not carried on Tn5084-like transposons. Instead, comparisons with microbial genomic sequences suggest the merA gene is located on a novel type II transposon. Coagulase-negative staphylococci and Streptococcus parasanguis had identical merA genes that represent a new merA variant.200415251199
40470.9990Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA.19948188605
596380.9989Expression of the mphB gene for macrolide 2'-phosphotransferase II from Escherichia coli in Staphylococcus aureus. The genes mphA and mphB encode macrolide 2'-phosphotransferases I and II, respectively, and they confer resistance to macrolide antibiotics in Escherichia coli. To study the expression of these genes in Gram-positive bacteria, we constructed recombinant plasmids that consisted of an mph gene and the pUB110 vector in Bacillus subtilis. When these plasmids were introduced into Staphylococcus aureus, the mphB gene was active and macrolide 2'-phosphotransferase II was produced. The gene endowed S. aureus with high-level resistance to spiramycin, a macrolide antibiotic with a 16-membered ring. Moreover, transcription of the mphB gene in S. aureus began at the promoter that was active in E. coli.19989503630
585090.9989Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria.200415358427
428100.9989Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin.19862438417
456110.9989Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE.19989687401
5964120.9989Heat shock treatment increases the frequency of loss of an erythromycin resistance-encoding transposable element from the chromosome of Lactobacillus crispatus CHCC3692. A 3,165-bp chromosomally integrated transposon, designatedTn3692, of the gram-positive strain Lactobacillus crispatus CHCC3692 contains an erm(B) gene conferring resistance to erythromycin at concentrations of up to 250 micrograms/ml. Loss of this resistance can occur spontaneously, but the rate is substantially increased by heat shock treatment. Heat shock treatment at 60 degrees C resulted in an almost 40-fold increase in the frequency of erythromycin-sensitive cells (erythromycin MIC, 0.047 micrograms/ml). The phenotypic change was followed by a dramatic increase in transcription of the transposase gene and the concomitant loss of an approximately 2-kb DNA fragment carrying the erm(B) gene from the 3,165-bp erm transposon. In cells that were not subjected to heat shock, transcription of the transposase gene was not detectable. The upstream sequence of the transposase gene did not show any homology to known heat shock promoters in the gene data bank. Significant homology (>99%) was observed between the erythromycin resistance-encoding gene from L. crispatus CHCC3692 and the erm(B) genes from other gram-positive bacteria, such as Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium, and Lactobacillus reuteri, which strongly indicates a common origin of the erm(B) gene for these species. The transposed DNA element was not translocated to other parts of the genome of CHCC3692, as determining by Southern blotting, PCR analysis, and DNA sequencing. No other major aberrations were observed, as judged by colony morphology, growth performance of the strain, and pulsed-field gel electrophoresis. These observations suggest that heat shock treatment could be used as a tool for the removal of unwanted antibiotic resistance genes harbored in transposons flanked by insertion sequence elements or transposases in lactic acid bacteria used for animal and human food production.200314660363
443130.9989Deletion mutant analysis of the Staphylococcus aureus plasmid pI258 mercury-resistance determinant. Deletion mutant analysis of the mercury-resistant determinant (mer operon) from the Staphylococcus aureus plasmid pI258 was used to verify the location of the merA and merB genes and to show the existence of mercuric ion transport gene(s). ORF5 was confirmed to be a transport gene and has an amino acid product sequence homologous to the merT gene products from several gram-negative bacteria and a Bacillus species. Deletion analysis established that inactivation of merA on a broad-spectrum mer resistance determinant resulted in a mercury-hypersensitive phenotype. Gene dosage had no apparent effect on the level of resistance conferred by the intact mer operon or on the expression of an inducible phenotype, except that when the intact pI258 mer operon was on a high copy number plasmid, uninduced cells possessed a volatilization rate that was at most only 3.5-fold less than that observed for induced cells. There was no need for mercury ion transport proteins for full resistance when the mer operon was expressed in a high copy number plasmid.19911954576
431140.9989Nucleotide sequence analysis of the complement resistance gene from plasmid R100. The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct.19826284713
3053150.9988Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids. The putative clindamycin resistance region of the Bacteroides fragilis R plasmid pBF4 was cloned in the vector R300B in Escherichia coli. This 3.8-kb EcoRI D fragment from pBF4 expressed noninducible tetracycline resistance in E. coli under aerobic but not anaerobic growth conditions. The fragment does not express tetracycline resistance in Bacteroides, a strict anaerobe. The separate tetracycline resistance transfer system in the Bacteroides host strain V479-1 has no homology to the cryptic determinant on pBF4. In addition, this aerobic tetracycline resistance determinant is not homologous to the three major plasmid mediated tetracycline resistance regions found in facultative gram-negative bacteria, represented by R100, RK2, and pBR322. A similar cryptic tetracycline resistance fragment was cloned from pCP1, a separate clindamycin resistance plasmid from Bacteroides that shares homology with the EcoRI D fragment of pBF4. This study identifies cryptic drug resistance determinants in Bacteroides that are expressed when inserted into an aerobically growing organism.19846379711
400160.9988The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Genes conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics via ribosomal modification are widespread in bacteria, including clinical isolates and MLS-producing actinomycetes. Such erm-type genes encode enzymes that mono- or dimethylate residue A-2058 of 23S rRNA. The different phenotypes resulting from monomethylation (MLS-I phenotype, conferred by erm type I genes) or dimethylation (MLS-II phenotype due to erm type II genes) have been characterized by introducing tlrD or ermE, respectively, into an MLS-sensitive derivative of Streptomyces lividans TK21. This strain (designated OS456) was generated by specific replacement of the endogenous resistance genes lrm and mgt. The MLS-I phenotype is characterized by high-level resistance to lincomycin with only marginal resistance to macrolides such as chalcomycin or tylosin, whereas the MLS-II phenotype involves high-level resistance to all MLS drugs. Mono- and dimethylated ribosomes were introduced into a cell-free protein-synthesizing system prepared from S. lividans and compared with unmodified particles in their response to antibiotics. There was no simple correlation between the relative potencies of MLS drugs at the level of the target site (i.e., the ribosome) and their antibacterial activities expressed as MICs.19968851574
3567170.9988Cloning and sequence analysis of ermQ, the predominant macrolide-lincosamide-streptogramin B resistance gene in Clostridium perfringens. The erythromycin resistance determinant from Clostridium perfringens JIR100 has been cloned, sequenced, and shown to be expressed in Escherichia coli. An open reading frame with sequence similarity to erm genes from other bacteria was identified and designated the ermQ gene. On the basis of comparative sequence analysis, it was concluded that the ermQ gene represented a new Erm hybridization class, designated ErmQ. Genes belonging to the ErmQ class were found to be widespread in C. perfringens, since 30 of 38 macrolide-lincosamide-streptogramin B-resistant C. perfringens strains, from diverse sources, hybridized to an ermQ-specific gene probe. The ermQ gene therefore represents the most common erythromycin resistance determinant in C. perfringens.19948067735
5849180.9988Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism.19892559912
5864190.9988Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum.200212383727