A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
405701.0000A model of the transmission of antibiotic-resistant bacteria in the intensive care unit. Antibiotic resistance is a growing problem, affecting microorganisms found both in hospitals and in the community. In most patients, resistant organisms arise by transmission of already resistant microorganisms from another person, rather than arising by mutation in the index patient. Antibiotic resistance genes are often borne on plasmids or transposons on which they may be spread rapidly to other organisms in the same species or in other species. Plasmids and transposons readily pick up genes for resistance to other antibiotics or nonantibiotic agents ("linked resistance"). Control of the spread of antibiotic resistance may require limitation of the usage of other agents with linked resistance as well as of the antibiotics of primary interest. A model is described for the analysis of the transmission of antibiotic-resistant enteric bacteria in the ICU. The model deals with the baseline level of antibiotic resistance in the "source" patient, the effect of antibiotics in augmenting the concentration of resistant organisms in that patient, the role of patient-to-patient contact, and factors which may influence the "colonizability" of the recipient patient. Possible measures to reduce the spread of antibiotic resistance are discussed. It is hoped that the model may serve to focus discussion on some key ingredients of the transmission cycle.19968856750
411810.9999Antimicrobial resistance in livestock. Antimicrobial resistance may become a major problem in veterinary medicine as a consequence of the intensive use and misuse of antimicrobial drugs. Related problems are now arising in human medicine, such as the appearance of multi-resistant food-borne pathogens. Product characteristics, dose, treatment interval and duration of treatment influence the selection pressure for antimicrobial drug resistance. There are theoretical, experimental and clinical indications that the emergence of de novo resistance in a pathogenic population can be prevented by minimizing the time that suboptimal drug levels are present in the infected tissue compartment. Until recently, attention has been focused on target pathogens. However, it should be kept in mind that when antimicrobial drugs are used in an individual, resistance selection mainly affects the normal body flora. In the long term, this is at least equally important as resistance selection in the target pathogens, as the horizontal transfer of resistance genes converts almost all pathogenic bacteria into potential recipients for antimicrobial resistance. Other factors contributing to the epidemiology of antimicrobial resistance are the localization and size of the microbial population, and the age, immunity and contact intensity of the host. In livestock, dynamic herd-related resistance patterns have been observed in different animal species.200312667177
424020.9999Genetics of antimicrobial resistance. Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.200617127523
429430.9999Anaerobic infections: update on treatment considerations. Anaerobic bacteria are the predominant indigenous flora of humans and, as a result, play an important role in infections, some of which are serious with a high mortality rate. These opportunistic pathogens are frequently missed in cultures of clinical samples because of shortcomings in collection and transport procedures as well as lack of isolation and susceptibility testing of anaerobes in many clinical microbiology laboratories. Correlation of clinical failures with known antibacterial resistance of anaerobic bacteria is seldom possible. Changes in resistance over time, and the discovery and characterization of resistance determinants in anaerobic bacteria, has increased recognition of problems in empirical treatment and has even resulted in changes in treatment guidelines. This review discusses the role of anaerobic bacteria in the normal flora of humans, their involvement in different mixed infections, developments in antibacterial resistance of the most frequent anaerobic pathogens and possible new treatment options.201020426496
405940.9999The prevention of antibiotic resistance during treatment. Prevention of emergence of antibiotic resistance during treatment is an important goal when prescribing antimicrobials. Antibiotic resistant bacteria can emerge in three main ways--by acquisition of new genes via transposons or horizontal gene transfer, by selection of resistant variants and by selection of naturally resistant strains. In order to minimize emergence of antibiotic resistance during therapy it is important to try and avoid antibiotics which encourage the transfer of resistance genes, to avoid selection of resistant variants from susceptible pathogens and to avoid ablation of antibiotic susceptible normal flora. However, implementing these objectives is not always easy. This paper discusses possible ways of limiting the emergence of resistant bacteria during treatment. It does not consider how to prevent the spread of these strains from person to person. The prevalence of antibiotic-resistant bacteria depends upon the selection of antibiotic-resistant strains and spread of these strains from person to person. Prevention therefore consists of two parts--the prevention of acquisition of resistance/selection of antibiotic-resistant variants and interrupting the mechanisms by which person-to-person spread can occur. This paper considers only the first of these two influences on prevalence of resistance.199910885824
431650.9999Why do antimicrobial agents become ineffectual? Antibiotic resistance has evolved over the past 50 years from a merely microbiological curiosity to a serious medical problem in hospitals all over the world. Resistance has been reported in almost all species of gram-positive and -negative bacteria to various classes of antibiotics including recently developed ones. Bacteria acquire resistance by reducing permeability and intracellular accumulation, by alteration of targets of antibiotic action, and by enzymatic modification of antibiotics. Inappropriate use of an antibiotic selects resistant strains much more frequently. Once resistant bacteria has emerged, the resistance can be transferred to other bacteria by various mechanisms, resulting in multiresistant strains. MRSA is one of the typical multiresistant nosocomial pathogens. A study of the PFGE pattern of endonuclease-digested chromosomal DNA showed that MRSA of a few clones were disseminated among newborns in the NICU of a Japanese hospital. In this regard, it is important to choose appropriate antibiotics and then after some time, to change to other classes to reduce the selection of resistant strains. Since the development of epoch-making new antibiotics is not expected in the near future, it has become very important to use existing antibiotics prudently based on mechanisms of antibiotic action and bacterial resistance. Control of nosocomial infection is also very important to reduce further spread of resistant bacteria.199810097676
405860.9999Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim.201222849265
429570.9999Antibiotic resistance in the intensive care unit. The increase in antibiotic resistance over the past 10 years can be traced to several factors. This includes exogenous transmission of bacteria, usually by hospital personnel. The use of potent antibiotics also can select for resistant bacteria initially present in low quantities. Strategies to reduce antibiotic resistance can be tailored to specific outbreaks in a given ICU. General strategies for reducing antibiotic resistance, on the other hand, include varying the agents used in the ICU over time. Reduction of the duration of therapy may prove to be another method of reducing antibiotic resistance.200212357111
406280.9999Antibiotic resistance mechanisms in bacteria of oral and upper respiratory origin. Over the past 20 years, antibiotic resistance has increased in virtually every species of bacteria examined. In this paper, the main mechanisms of antibiotic resistance currently known for antibiotics used for treatment of disease caused by oral and upper respiratory bacteria will be reviewed, with an emphasis on the most commonly used antibiotics. The possible role that mercury, which is released from silver amalgams, plays in the oral/respiratory bacterial ecology is also discussed, as it relates to possible selection of antibiotic resistant bacteria.19989573495
431790.9999Development and spread of bacterial resistance to antimicrobial agents: an overview. Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The emergence and spread of multiply resistant organisms represent the convergence of a variety of factors that include mutations in common resistance genes that extend their spectrum of activity, the exchange of genetic information among microorganisms, the evolution of selective pressures in hospitals and communities that facilitate the development and spread of resistant organisms, the proliferation and spread of multiply resistant clones of bacteria, and the inability of some laboratory testing methods to detect emerging resistance phenotypes. Twenty years ago, bacteria that were resistant to antimicrobial agents were easy to detect in the laboratory because the concentration of drug required to inhibit their growth was usually quite high and distinctly different from that of susceptible strains. Newer mechanisms of resistance, however, often result in much more subtle shifts in bacterial population distributions. Perhaps the most difficult phenotypes to detect, as shown in several proficiency testing surveys, are decreased susceptibility to beta-lactams in pneumococci and decreased susceptibility to vancomycin in staphylococci. In summary, emerging resistance has required adaptations and modifications of laboratory diagnostic techniques, empiric anti-infective therapy for such diseases as bacterial meningitis, and infection control measures in health care facilities of all kinds. Judicious use is imperative if we are to preserve our arsenal of antimicrobial agents into the next decade.200111524705
4043100.9999Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products. In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.201627383577
4239110.9999Bacterial resistance. Pathogenic bacteria remain adaptable to an increasingly hostile environment and a wider variety of more potent antibiotics. Organisms not intrinsically prepared for defense have been able to acquire resistance to newer antimicrobial agents. Chromosomal mutations alone cannot account for the rapid emergence and spread of antibiotic resistance. It has been established that plasmids and transposons are particularly important in the evolution of antibiotic-resistant bacteria. Plasmid- or transposon-mediated resistance provides the bacteria with pre-evolved genes refined to express high-level resistance. In particular, transposons can transfer these resistance determinants in diverse bacterial species, and nature provides in humans and animals large intestinal reservoirs in which such communications are facilitated. Antibiotic therapy exerts selection pressures on bacteria. Eradication or marked reduction in the populations of susceptible organisms promotes the overgrowth of intrinsically resistant strains and favors those resistant as a result of favorable chromosomal mutations or via plasmids or transposons. In our hospitals, where antibiotic consumption continues to increase, the nosocomial flora consists of many resistant bacteria, and infections acquired in the nosocomial setting are now far more severe than their community-acquired counterparts. There is convincing evidence that infection control measures must take into further consideration the contribution of the hospital worker as carrier and mediator of antibiotic resistance.19911649425
4125120.9999The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. A simple mathematical model of bacterial transmission within a hospital was used to study the effects of measures to control nosocomial transmission of bacteria and reduce antimicrobial resistance in nosocomial pathogens. The model predicts that: (i) Use of an antibiotic for which resistance is not yet present in a hospital will be positively associated at the individual level (odds ratio) with carriage of bacteria resistant to other antibiotics, but negatively associated at the population level (prevalence). Thus inferences from individual risk factors can yield misleading conclusions about the effect of antibiotic use on resistance to another antibiotic. (ii) Nonspecific interventions that reduce transmission of all bacteria within a hospital will disproportionately reduce the prevalence of colonization with resistant bacteria. (iii) Changes in the prevalence of resistance after a successful intervention will occur on a time scale of weeks to months, considerably faster than in community-acquired infections. Moreover, resistance can decline rapidly in a hospital even if it does not carry a fitness cost. The predictions of the model are compared with those of other models and published data. The implications for resistance control and study design are discussed, along with the limitations and assumptions of the model.200010677558
4326130.9999Antibiotic resistance in oral/respiratory bacteria. In the last 20 years, changes in world technology have occurred which have allowed for the rapid transport of people, food, and goods. Unfortunately, antibiotic residues and antibiotic-resistant bacteria have been transported as well. Over the past 20 years, the rise in antibiotic-resistant gene carriage in virtually every species of bacteria, not just oral/respiratory bacteria, has been documented. In this review, the main mechanisms of resistance to the important antibiotics used for treatment of disease caused by oral/respiratory bacteria--including beta-lactams, tetracycline, and metronidazole--are discussed in detail. Mechanisms of resistance for macrolides, lincosamides, streptogramins, trimethoprim, sulfonamides, aminoglycosides, and chloramphenicol are also discussed, along with the possible role that mercury resistance may play in the bacterial ecology.19989825225
4155140.9999Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.200211936257
4318150.9999Emerging problems of antibiotic resistance in community medicine. Emergence of antimicrobial resistance in bacteria associated with community acquired infections has made the choice of empirical therapy more difficult and more expensive. The problems due to possible spread of MRSA to the community, emergence of penicillin resistance in S. pneumoniae, ampicillin resistance in H. influenzae, and multiresistance among common enteric pathogens are highlighted. Bacteria have a remarkable ability to develop resistance to many of the newly synthesized antimicrobial agents but the appropriate use of antibiotics will delay and in many cases prevent the emergence of resistance.199610879217
4157160.9999Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Multidrug resistance among pathogenic bacteria is imperilling the worth of antibiotic infection, which has become an emerging problem, which previously transformed the veterinary sciences. Since its discovery, many antibiotics have been effective in treating bacterial infections in animals. Escherichia coli, a bacterium, is one of the reservoirs of antibiotic resistance genes in a community. The current use of antibiotics and demographic factors usually increase multidrug resistance. Genetically, the continuous adoption of environmental changes by E. coli allows it to acquire many multidrug resistance. During the host's life, antimicrobial resistance rarely poses a threat to the E. coli strain and pressure, similar to that of a flexible animal lower intestine. In this review, we describe the E. coli antibiotic drug-resistance mechanism driving transmission, the causes of transmission and the harmful effects on animal health.202235608149
4117170.9999Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. Several lines of evidence indicate that the use of anti-microbial agents in food animals is associated with anti-microbial resistance among bacteria isolated from humans. The use of anti-microbial agents in food animals is most clearly associated with anti-microbial resistance among Salmonella and Campylobacter isolated from humans, but also appears likely among enterococci, Escherichia coli and other bacteria. Evidence is also accumulating that the anti-microbial resistance among bacteria isolated from humans could be the result of using anti-microbial agents in food animals and is leading to human health consequences. These human health consequences include: (i) infections that would not have otherwise occurred and (ii) increased frequency of treatment failures and increased severity of infection. Increased severity of infection includes longer duration of illness, increased frequency of bloodstream infections, increased hospitalization and increased mortality. Continued work and research efforts will provide more evidence to explain the connection between the use of anti-microbial agents in food animals and anti-microbial-resistant infections in humans. One particular focus, which would solidify this connection, is to understand the factors that dictate spread of resistance determinants, especially resistant genes. With continued efforts on the part of the medical, veterinary and public health community, such research may contribute to more precise guidelines on the use of anti-microbials in food animals.200415525369
9435180.9999Why are bacteria refractory to antimicrobials? The incidence of antibiotic resistance in pathogenic bacteria is rising. Antibiotic resistance can be achieved via three distinct routes: inactivation of the drug, modification of the target of action, and reduction in the concentration of drug that reaches the target. It has long been recognized that specific antibiotic resistance mechanisms can be acquired through mutation of the bacterial genome or by gaining additional genes through horizontal gene transfer. Recent attention has also brought to light the importance of different physiological states for the survival of bacteria in the presence of antibiotics. It is now apparent that bacteria have complex, intrinsic resistance mechanisms that are often not detected in the standard antibiotic sensitivity tests performed in clinical laboratories. The development of resistance in bacteria found in surface-associated aggregates or biofilms, owing to these intrinsic mechanisms, is paramount.200212354553
4119190.9999How to modify conditions limiting resistance in bacteria in animals and other reservoirs. Antimicrobial agents in veterinary medicine are used for three purposes: therapy, prophylaxis, and nutrition. The major public health risk is that selection pressure leads to an increase in the pool of resistance genes. Since 1987, the nutritional use of antimicrobials in Europe has been regulated by a council directive, which demands special investigations into the potential of antimicrobials to increase rates of drug resistance. However, the prophylactic and therapeutic use of antimicrobials has sometimes led to the emergence of resistant bacteria. For example, the selective effect of the prophylactic use of gentamicin and the therapeutic use of quinolones led to the emergence of resistant salmonellae. To prevent the spread of resistant microorganisms from animals to humans, it should be recognized that antibiotics are not suitable as a compensation for poor hygiene standards or for the eradication of a pathogen from a certain environment. They should be used only by doctors or veterinarians.19978994793