Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
405301.0000Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. The concern over antibiotic-resistant bacteria producing human infections that are difficult to treat has led to a proliferation of studies in recent years investigating resistance in livestock, food products, the environment and people, as well as in the mechanisms of transfer of the genetic elements of resistance between bacteria, and the routes, or risk pathways, by which the spread of resistance might occur. The possibility of transfer of resistant genetic elements between bacteria in mixed populations adds many additional and complex potential routes of spread. There is now considerable evidence that transfer of antimicrobial resistance from food-producing animals to humans directly via the food chain is a likely route of spread. The application of animal wastes to farmland and subsequent leaching into watercourses has also been shown to lead to many potential, but less well-documented, pathways for spread. Often, however, where contamination of water sources, processed foods, and other environmental sites is concerned, specific routes of circulation are unclear and may well involve human sources of contamination. Examination of water sources in particular may be difficult due to dilution and their natural flow. Also, as meat is comparatively easy to examine, and is frequently suspected of being a source of spread, there is some bias in favour of studying this vehicle. Such complexities mean that, with the evidence currently available, it is not possible to prioritise the importance of potential risk pathways and circulation routes.201222849279
418910.9999Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life.200617094710
419020.9999Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry.201424705326
419230.9999Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.201323805136
418840.9999Use of antimicrobial agents in aquaculture. The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.201222849275
404450.9999Antibiotic resistance in food-related bacteria--a result of interfering with the global web of bacterial genetics. A series of antibiotic resistance genes have been sequenced and found to be identical or nearly identical in various ecological environments. Similarly, genetic vectors responsible for assembly and mobility of antibiotic resistance genes, such as transposons, integrons and R plasmids of similar or identical type are also widespread in various niches of the environment. Many zoonotic bacteria carry antibiotic resistance genes directly from different food-producing environments to the human being. These circumstances may have a major impact on the degree for success in treating infectious diseases in man. Several recent examples demonstrate that use of antibiotics in all parts of the food production chain contributes to the increasing level of antibiotic resistance among the food-borne pathogenic bacteria. Modern industrialized food production adds extra emphasis on lowering the use of antibiotics in all parts of agriculture, husbandry and fish farming because these food products are distributed to very large numbers of humans compared to more traditional smaller scale niche production.200212222637
389960.9999Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain. Antimicrobial resistance (AMR) is a global health problem. Bacteria carrying resistance genes can be transmitted between humans, animals and the environment. There are concerns that the widespread use of antimicrobials in the food chain constitutes an important source of AMR in humans, but the extent of this transmission is not well understood. The aim of this review is to examine published evidence on the links between antimicrobial use (AMU) in the food chain and AMR in people and animals. The evidence showed a link between AMU in animals and the occurrence of resistance in these animals. However, evidence of the benefits of a reduction in AMU in animals on the prevalence of resistant bacteria in humans is scarce. The presence of resistant bacteria is documented in the human food supply chain, which presents a potential exposure route and risk to public health. Microbial genome sequencing has enabled the establishment of some links between the presence of resistant bacteria in humans and animals but, for some antimicrobials, no link could be established. Research and monitoring of AMU and AMR in an integrated manner is essential for a better understanding of the biology and the dynamics of antimicrobial resistance.202032013023
405570.9999Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.201323711078
669980.9999Wildlife and Antibiotic Resistance. Antibiotic resistance is a major human health problem. While health care facilities are main contributors to the emergence, evolution and spread of antibiotic resistance, other ecosystems are involved in such dissemination. Wastewater, farm animals and pets have been considered important contributors to the development of antibiotic resistance. Herein, we review the impact of wildlife in such problem. Current evidence supports that the presence of antibiotic resistance genes and/or antibiotic resistant bacteria in wild animals is a sign of anthropic pollution more than of selection of resistance. However, once antibiotic resistance is present in the wild, wildlife can contribute to its transmission across different ecosystems. Further, the finding that antibiotic resistance genes, currently causing problems at hospitals, might spread through horizontal gene transfer among the bacteria present in the microbiomes of ubiquitous animals as cockroaches, fleas or rats, supports the possibility that these organisms might be bioreactors for the horizontal transfer of antibiotic resistance genes among human pathogens. The contribution of wildlife in the spread of antibiotic resistance among different hosts and ecosystems occurs at two levels. Firstly, in the case of non-migrating animals, the transfer will take place locally; a One Health problem. Paradigmatic examples are the above mentioned animals that cohabit with humans and can be reservoirs and vehicles for antibiotic resistance dissemination. Secondly, migrating animals, such as gulls, fishes or turtles may participate in the dissemination of antibiotic resistance across different geographic areas, even between different continents, which constitutes a Global Health issue.202235646736
389790.9999The use of aminoglycosides in animals within the EU: development of resistance in animals and possible impact on human and animal health: a review. Aminoglycosides (AGs) are important antibacterial agents for the treatment of various infections in humans and animals. Following extensive use of AGs in humans, food-producing animals and companion animals, acquired resistance among human and animal pathogens and commensal bacteria has emerged. Acquired resistance occurs through several mechanisms, but enzymatic inactivation of AGs is the most common one. Resistance genes are often located on mobile genetic elements, facilitating their spread between different bacterial species and between animals and humans. AG resistance has been found in many different bacterial species, including those with zoonotic potential such as Salmonella spp., Campylobacter spp. and livestock-associated MRSA. The highest risk is anticipated from transfer of resistant enterococci or coliforms (Escherichia coli) since infections with these pathogens in humans would potentially be treated with AGs. There is evidence that the use of AGs in human and veterinary medicine is associated with the increased prevalence of resistance. The same resistance genes have been found in isolates from humans and animals. Evaluation of risk factors indicates that the probability of transmission of AG resistance from animals to humans through transfer of zoonotic or commensal foodborne bacteria and/or their mobile genetic elements can be regarded as high, although there are no quantitative data on the actual contribution of animals to AG resistance in human pathogens. Responsible use of AGs is of great importance in order to safeguard their clinical efficacy for human and veterinary medicine.201931002332
4083100.9999Antibiotic resistance gene discovery in food-producing animals. Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.201424994584
3900110.9999Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ.202032838793
4054120.9999Ecological impact of antibiotic use in animals on different complex microflora: environment. Different means of interaction between microecological systems in different animal hosts (including humans) and the environment may occur during the transfer of resistant bacteria and their resistance genes. Spread of resistance takes place in different ways with respect to clonal spread of resistance strains by the spread of wide host range plasmids and translocatable elements. Commensals in ecosystems have a special significance and a pronounced capacity for acquisition and transfer of resistance genes as with Enterococcus faecium and Escherichia coli in the gut flora or Pseudomonas spp. in aquatic environments. The route of transmission from animals to humans by meat products is well established. Other routes via water and food plants (vegetables) have been investigated less, although resistance genes transfer in aquatic environments as evidenced from sequence comparison of such genes (e.g. tetR, floR in Salmonella typhimurium DT104). Whether this is due to rare but important transfer events or whether there is a more frequent exchange in aquatic or terrestrial environments needs further elucidation.200010794954
3983130.9999Antibiotic resistance genes in bacteria: Occurrence, spread, and control. The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.202134651331
4070140.9999Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.201830555448
4019150.9999Antimicrobial resistance in humans, livestock and the wider environment. Antimicrobial resistance (AMR) in humans is inter-linked with AMR in other populations, especially farm animals, and in the wider environment. The relatively few bacterial species that cause disease in humans, and are the targets of antibiotic treatment, constitute a tiny subset of the overall diversity of bacteria that includes the gut microbiota and vast numbers in the soil. However, resistance can pass between these different populations; and homologous resistance genes have been found in pathogens, normal flora and soil bacteria. Farm animals are an important component of this complex system: they are exposed to enormous quantities of antibiotics (despite attempts at reduction) and act as another reservoir of resistance genes. Whole genome sequencing is revealing and beginning to quantify the two-way traffic of AMR bacteria between the farm and the clinic. Surveillance of bacterial disease, drug usage and resistance in livestock is still relatively poor, though improving, but achieving better antimicrobial stewardship on the farm is challenging: antibiotics are an integral part of industrial agriculture and there are very few alternatives. Human production and use of antibiotics either on the farm or in the clinic is but a recent addition to the natural and ancient process of antibiotic production and resistance evolution that occurs on a global scale in the soil. Viewed in this way, AMR is somewhat analogous to climate change, and that suggests that an intergovernmental panel, akin to the Intergovernmental Panel on Climate Change, could be an appropriate vehicle to actively address the problem.201525918441
3991160.9999Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. Biofilm-forming bacteria are ubiquitous in the environment and also include biofilm-forming pathogens. Environmental biofilms may form a reservoir for risk genes and may act as a challenge for human health. Examples of the health relevance of biofilms are the increase in antibiotic resistant bacteria hosted in biofilms in hospital and environment and consequently the interaction of these bacteria with human cells, e.g. in the immune system. Although data concerning the occurrence and spread of resistant bacteria within hospital care units are available, the fate of these bacteria in the environment and especially in the aquatic environment has barely been investigated. Once antibiotic resistant bacteria have entered the environment, a back coupling by ingestion or other possible entry into the host has to be prevented. Therefore a strategy to investigate paths of entry, accumulation and spread of resistant bacteria in environmental compartments has been developed using quantitative determination of genetic resistance determinants. Additionally a bacterial bioassay assessed bioeffectivity thresholds of low antibiotic concentrations. This approach enables an evaluation of the potential of contaminated waters to exert a selection pressure on bacterial communities and thus promote the persistence of resistant organisms. Completed with an indicator system for the identification of sources of multiresistant bacteria a concept for monitoring and evaluation of environmental compartments with respect to their potential of antibiotic resistance dissemination is suggested.200616705607
3985170.9999The scourge of antibiotic resistance: the important role of the environment. Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoroquinolones resistance genes, such as qnr). The rapid evolution and spread of "new" antibiotic resistance genes has been enhanced by modern human activity and its influence on the environmental resistome. This highlights the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bacteria introduced into the environment. Reducing this risk must include improved management of waste containing antibiotic residues and antibiotic-resistant microorganisms.201323723195
4123180.9999The Invisible Threat of Antibiotic Resistance in Food. The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.202540149061
6701190.9999Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.202236136696